Bichromatic compatible matchings

Greg Aloupis ${ }^{\mathrm{a}, 1}$, Luis Barba ${ }^{\mathrm{a}, \mathrm{b}, *}$, Stefan Langerman ${ }^{\mathrm{a}, 2}$, Diane L. Souvaine ${ }^{\mathrm{c}, 3}$
${ }^{\text {a }}$ Département d'Informatique, Université Libre de Bruxelles, Brussels, Belgium
${ }^{\text {b }}$ School of Computer Science, Carleton University, Ottawa, Canada
${ }^{\text {c }}$ Department of Computer Science, Tufts University, Medford, MA, United States

A R T I C L E I N F O

Article history:

Available online 26 August 2014

Keywords:

Perfect matchings
Bichromatic point set
Compatible matchings
Transformation graph
Reconfiguration problem

Abstract

For a set R of n red points and a set B of n blue points, a $B R$-matching is a non-crossing geometric perfect matching where each segment has one endpoint in B and one in R. Two $B R$-matchings are compatible if their union is also non-crossing. We prove that, for any two distinct $B R$-matchings M and M^{\prime}, there exists a sequence of $B R$-matchings $M=$ $M_{1}, \ldots, M_{k}=M^{\prime}$ such that M_{i-1} is compatible with M_{i}. This implies the connectivity of the compatible bichromatic matching graph containing one node for each $B R$-matching and an edge joining each pair of compatible $B R$-matchings, thereby answering the open problem posed by Aichholzer et al. in [1].

(C) 2014 Elsevier B.V. All rights reserved.

1. Introduction

A planar straight line graph (PSLG) is a geometric graph in which the vertices are points embedded in the plane and the edges are non-crossing line segments. There are many special types of PSLGs of which we name a few. A triangulation is a PSLG to which no more edges may be added between existing vertices. A geometric matching of a given point set P is a 1-regular PSLG consisting of pairwise disjoint line segments in the plane joining points of P. A geometric matching is perfect if every point in P belongs to exactly one segment.

Two branches of study on PSLGs include those of geometric augmentation and geometric reconfiguration. A typical augmentation problem on a PSLG $G=(V, E)$ asks for a set of new edges E^{\prime} such that the graph ($V, E \cup E^{\prime}$) retains or gains some desired properties (see survey by Hurtado and Tóth [2]).

A typical reconfiguration problem on a pair of PSLGs G and G^{\prime} sharing some property asks for a sequence of PSLGs $G=G_{0}, \ldots, G_{k}=G^{\prime}$ where each successive pair of PSLGs G_{i-1}, G_{i} jointly satisfies some geometric constraints. In some situations, a bound on the value of k is desired as well [3-9].

One such solved problem is that of reconfiguring triangulations: given two triangulations T and T^{\prime}, one can compute a sequence of triangulations $T=T_{0}, \ldots, T_{k}=T^{\prime}$ on the same point set such that T_{i-1} can be reconfigured to T_{i} by flipping one edge. Furthermore, bounds on the value of k are known: $O\left(n^{2}\right)$ edge flips are always sufficient [8] and $\Omega\left(n^{2}\right)$ edge flips are sometimes necessary [7].

[^0]

Fig. 1. A ham-sandwich matching obtained by recursively applying ham-sandwich cuts.

Two PSLGs (not necessarily disjoint) on the same vertex set are compatible if their union is planar. Compatible geometric matchings have been the object of study in both augmentation and reconfiguration problems. For example, the Disjoint Compatible Matching Conjecture [5] was recently solved in the affirmative [10]: every perfect planar matching M of $2 n$ segments on $4 n$ points can be augmented by $2 n$ additional segments to form a PSLG that is the union of simple polygons.

Let M and M^{\prime} be two perfect planar matchings of a given point set. The reconfiguration problem asks for a compatible sequence of perfect matchings $M=M_{0}, \ldots, M_{k}=M^{\prime}$ such that M_{i-1} is compatible with M_{i} for all $i \in\{1, \ldots, k\}$. Aichholzer et al. [5] proved that there is always a compatible sequence of $O(\log n)$ matchings that reconfigures any given matching into a canonical matching. Thus, the compatible matching graph, that has one node for each perfect planar matching and an edge between any two compatible matchings, is connected with diameter $O(\log n)$. Razen [9] proved that the distance between two nodes in this graph is sometimes $\Omega(\log n / \log \log n)$.

A natural question to extend this research is to ask what happens with bichromatic point sets in which the segments must join points from different colors. Let $P=B \cup R$ be a set of points in the plane in general position where $|R|=|B|=n$. A straight-line segment with one endpoint in B and one in R is called a bichromatic segment. A perfect planar matching of P where every segment is bichromatic is called a $B R$-matching. Sharir and Welzl [11] proved that the number of $B R$-matchings of P is at most $O\left(7.61^{n}\right)$. Hurtado et al. [12] showed that any $B R$-matching can be augmented to a crossing-free bichromatic spanning tree in $O(n \log n)$ time. Aichholzer et al. [1] proved that for any $B R$-matching M of P, there are at least $\left\lceil\frac{n-1}{2}\right\rceil$ bichromatic segments spanned by P that are compatible with M. Furthermore, there are $B R$-matchings with at most $3 n / 4$ compatible bichromatic segments.

At least one $B R$-matching can always be produced by recursively applying ham-sandwich cuts; see Fig. 1 for an illustration. A $B R$-matching produced in this way is called a ham-sandwich matching. Notice that the general position assumption is sometimes necessary to guarantee the existence of a $B R$-matching. However, not all $B R$-matchings can be produced using ham-sandwich cuts. Furthermore, some point sets admit only one $B R$-matching, which must be a ham-sandwich matching.

Two $B R$-matchings M and M^{\prime} are connected if there is a sequence of $B R$-matchings $M=M_{0}, \ldots, M_{k}=M^{\prime}$, such that M_{i-1} is compatible with M_{i}, for $1 \leq i \leq k$. An open problem posed by Aichholzer et al. [1] was to prove that all $B R$-matchings of a given point set are connected. ${ }^{4}$ We answer this in the affirmative by using a ham-sandwich matching H as a canonical form. Consider the first ham-sandwich cut line ℓ used to construct H. We show how to reconfigure any given $B R$-matching via a compatible sequence so that the last matching in the sequence contains no segment crossing ℓ. We use this result recursively, on every ham-sandwich cut used to generate H, to show that any given $B R$-matching is connected with H.

2. Ham-sandwich matchings

In this paper, a ham-sandwich cut of P is a line passing through no point of P and containing exactly $\left\lfloor\frac{n}{2}\right\rfloor$ blue and $\left\lfloor\frac{n}{2}\right\rfloor$ red points to one side. Notice that if n is even, then this matches the classical definition of ham-sandwich cuts (see Chapter 3 of [13]). However, when n is odd, a ham-sandwich cut ℓ according to the classical definition will go through a red and a blue point of P. In this case, we obtain a ham-sandwich cut according to our definition by slightly moving ℓ away from these two points without changing its slope and without reaching another point of P. By the general position assumption, this is always possible.

Recall that P admits at least one ham-sandwich matching resulting from recursively applying ham-sandwich cuts. Moreover, note that P may admit several ham-sandwich matchings.

Let M be a $B R$-matching of P. In this section we prove that M is connected with a ham-sandwich matching H of P. Consider a ham-sandwich cut ℓ used to construct H. The idea of the proof is to show the existence of a $B R$-matching M^{\prime},

[^1]
https://daneshyari.com/en/article/414216

Download Persian Version:

https://daneshyari.com/article/414216

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: aloupis.greg@gmail.com (G. Aloupis), lbarbaf@@ulb.ac.be (L. Barba), slanger@ulb.ac.be (S. Langerman), dls@cs.tufts.edu (D.L. Souvaine).
 1 Chargé de recherches du F.R.S.-FNRS.
 2 Directeur de recherches du F.R.S.-FNRS.
 ${ }^{3}$ Supported by NSF Grant \#CCF-0830734.

[^1]: ${ }^{4}$ This problem was also posed during the EuroGIGA meeting that took place after EuroCG 2012.

