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We present several algorithms for computing the visibility polygon of a simple polygon
P of n vertices (out of which r are reflex) from a viewpoint inside P , when P resides
in read-only memory and only few working variables can be used. The first algorithm
uses a constant number of variables, and outputs the vertices of the visibility polygon
in O (nr̄) time, where r̄ denotes the number of reflex vertices of P that are part of the
output. Whenever we are allowed to use O (s) variables, the running time decreases to
O ( nr

2s + n log2 r) (or O ( nr
2s + n log r) randomized expected time), where s ∈ O (log r). This is

the first algorithm in which an exponential space-time trade-off for a geometric problem
is obtained.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The visibility polygon of a simple polygon P from a viewpoint q is the set of all points of P that can be seen from q,
where two points p and q can see each other whenever the segment pq is contained in P . The visibility polygon is a
fundamental concept in computational geometry and one of the first problems studied in planar visibility. The first correct
and optimal algorithm for computing the visibility polygon from a point was found by Joe and Simpson [20]. It computes
the visibility polygon from a point in linear time and space. We refer the reader to the survey of O’Rourke [23] and the
book of Gosh [17] for an extensive discussion of such problems.

✩ A preliminary version of this paper appeared in the Proceedings of the 22nd International Symposium on Algorithms and Computation (ISAAC
2011) [10].
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In this paper we look for an algorithm that computes the visibility polygon of a given point and uses few variables.
This kind of algorithm not only provides an interesting trade-off between running time and memory needed, but is also
useful in portable devices where important hardware constraints are present (such as the ones found in digital cameras
or mobile phones). In addition, this model has direct applications in concurrent environments where several devices with
limited memory resources perform some computation on a large centralized input. Since several devices may access the
input at the same time, allowing writing to the input memory can result in compromising its integrity.

A significant amount of research has focused on the design of algorithms that use few variables, some of them even
dating from the 80s [21]. Although many models exist, most of the research considers that the input is in some kind of
read-only data structure. In addition to the input values, we are allowed to use few additional variables (typically a variable
holds a logarithmic number of bits).

One of the most studied problems in this setting is that of selection. For any constant ε ∈ (0,1), Munro and Raman
[22] gave an algorithm that runs in O (n1+ε) time and uses O (1/ε) variables. Frederickson [16] extended this result to the
case in which s working variables are available (and s ∈ Ω(log n) ∩ O (2log n/ log∗ n)). Raman and Ramnath [24] gave several
exact and approximation algorithms for the case in which fewer variables are available. Among other results, they provide
a 2/3-approximation of the median that runs in O (sn1+1/s) time using O (s) variables (for s ∈ o(log n)), or O (n log n) time,
using O (log n) variables. More recently Chan [14] provided several lower bounds for performing selection with few variables.

In recent years there has been a growing interest in finding algorithms for geometric problems that use a constant
number of variables. An early example is the well-known gift-wrapping algorithm (also known as Jarvis march [19]), which
can be used to report the points on the convex hull of a set of n points in O (nh̄) time using a constant number of variables,
where h̄ is the number of vertices on the convex hull. Recently, Asano and Rote [8] and afterwards Asano et al. [5,7] gave
efficient methods for computing well-known geometric structures, such as the Delaunay triangulation, the Voronoi diagram,
a polygon triangulation, and a minimum spanning tree (MST) using a constant number of variables. These algorithms run
in O (n2) time (except computing the MST, which needs O (n3) time). Observe that, since these structures have linear size,
they are not stored but reported.

1.1. Results

In this paper we present a novel approach for computing the visibility polygon of a given point inside a simple polygon.
It is easy to see that reflex vertices have a much larger influence on the visibility polygon than convex vertices. Therefore,
whenever possible we express the running time of our algorithms not only in terms of n, the complexity of P , but also
in terms of r and r̄ (the number of reflex vertices of P that are present in the input and in the output, respectively). This
approach continues a line of research relating the combinatorial and computational properties of polygons to the number
of their reflex vertices. We refer the reader to [3,11,12] and references found therein for a deep review of existing similar
results.

In Section 2 we begin the paper with some preliminaries, followed by some observations and basic algorithms in Sec-
tion 3. In Section 4 we give an output-sensitive algorithm that reports the vertices of the visibility polygon in O (nr̄) time
using O (1) variables. Using this algorithm as a stepping stone, in Section 5 we present a divide-and-conquer algorithm.
This algorithm runs in O ( nr

2s + n log2 r) time (or O ( nr
2s + n log r) randomized expected time) using O (s) variables (for any

s ∈ O (log r)), giving an exponential trade-off between running time and space.

Remark. Prior to this work, there was no algorithm for computing the visibility polygon in memory-constrained models.
Indeed, this problem was explicitly posed as an open problem by Asano et al. [6] for the case in which only a constant
number of variables is allowed. Following the conference version of this paper [10], De et al. [15] presented a linear-time
algorithm that uses o(n)-variables. Unfortunately, the result turned out to be incorrect [1,2]. In a companion paper [9] we
give a general method for transforming stack-based algorithms into memory constrained workspaces. Since Joe and Simp-
son’s algorithm for computing the visibility polygon [20] is stack-based, that approach can be used for this problem as well.

2. Preliminaries

2.1. Model definition and considerations on input/output precision

We use a slight variation of the constant workspace model, introduced by Asano and Rote [8]. In this model the input of
the problem resides in a read-only data structure and we are allowed to perform random access to any of the values of the
input in constant time. An algorithm can use a constant number of variables and we assume that each variable or pointer
contains a data word of O (log n) bits. Implicit storage consumption required by recursive calls is also considered part of the
workspace. This model is also referred as logspace [4] in the complexity literature.

Many other similar models have been studied. We note that in some of them (like the streaming [18] or the multi-pass
model [13]) the values of the input can only be read once or a fixed number of times. As in the constant workspace model
of Asano and Rote [8], our model allows scanning the input as many times as necessary. However, our model differs from
theirs in two aspects: we are allowed to use a workspace of O (s) variables (instead of O (1)), and we do not require random
access to the vertices of the input.

The input to our problem is a simple polygon P in a read-only data structure and a point q in the plane, from where the
visibility polygon needs to be computed. We do not make any assumptions on whether the input coordinates are rational
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