
Big Data Research 2 (2015) 110–116

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Multi-Tier Resource Allocation for Data-Intensive Computing ✩

Thomas Ryan a, Young Choon Lee b,∗
a School of Information Technologies, The University of Sydney, NSW, 2006, Australia
b Department of Computing, Macquarie University, NSW, 2109, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 December 2014
Received in revised form 9 February 2015
Accepted 2 March 2015
Available online 23 March 2015

Keywords:
Resource allocation
Data-intensive computing
Cloud computing
Big data
Application heterogeneity
MapReduce

As distributed computing systems are used more widely, driven by trends such as ‘big data’ and cloud 
computing, they are being used for an increasingly wide range of applications. With this massive increase 
in application heterogeneity, the ability to have a general purpose resource management technique that 
performs well in heterogeneous environments is becoming increasingly important.
In this paper, we present Multi-Tier Resource Allocation (MTRA) as a novel fine-grained resource man-
agement technique for distributed systems. The core idea is based on allocating resources to individual 
tasks in a tiered or layered approach. To account for heterogeneity, we propose a dynamic resource allo-
cation method that adjusts resource allocations to individual tasks on a cluster node based on resource 
utilisation levels. We demonstrate the efficacy of this technique in a data-intensive computing environ-
ment, MapReduce data processing framework in Hadoop YARN. Our results demonstrate that MTRA is an 
effective general purpose resource management technique particularly for data-intensive computing en-
vironments. On a range of MapReduce benchmarks in a Hadoop YARN environment, our MTRA technique 
improves performance by up to 18%. In a Facebook workload model it improves job execution times by 
10% on average, and up to 56% for individual jobs.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

As the scale and size of applications continues to increase with 
the explosive growth in data volume (dubbed ‘Big Data’), dis-
tributed processing/computing has become rather essential. The 
availability of virtually unlimited resource capacity with cloud 
computing has greatly enabled such distributed computing. As a 
result, a wide range of distributed systems has been developed. 
Some popular examples are MapReduce data processing frame-
work [1], Pregel graph processing system [2] and Montage as-
tronomical image mosaic engine [3,4]. Applications in these dis-
tributed systems exhibit much heterogeneity in terms particularly 
of resource usage characteristics, e.g., CPU-intensive applications 
and data-intensive applications.

Within distributed systems, resource allocation and manage-
ment is an ongoing research concern; it is well known that im-
proving resource allocation mechanisms can result in considerable 
real-world improvements in performance and efficiency. However, 
different applications have different resource requirements, mean-

✩ This article belongs to BDA-HPC.

* Corresponding author.
E-mail addresses: trya3473@uni.sydney.edu.au (T. Ryan), young.lee@mq.edu.au

(Y.C. Lee).

ing that effective resource management in heterogeneous envi-
ronments is much more difficult. While there has been a large 
amount of research into resource allocation, most resource allo-
cation strategies do not account for application heterogeneity. In 
particular, the majority of classic optimisation techniques for re-
source management assume homogeneity in either application or 
resource, or both. And thus, they often do not perform optimally 
in heterogeneous environments.

In this paper, we address the problem of fine-grained resource 
allocation to distributed systems where jobs are composed of many 
small tasks taking into account application heterogeneity. The tra-
ditional approach to resource management in these systems has 
been to divide resources into logical partitions (called ‘slots’ or 
‘containers’), and allocate tasks to partitions [1,5]. However, since 
different jobs have different resource usage characteristics, this ap-
proach can lead to both resource under-utilisation and resource 
contention, resulting in decreased performance. A general purpose, 
scheduler-independent solution to this problem is highly desirable, 
especially as we see increasing heterogeneity of both applications 
and execution environments.

To this end, we develop Multi-Tier Resource Allocation (MTRA) 
as a novel resource management technique that dynamically ad-
justs resource allocations to heterogeneous, individual tasks in 
distributed systems. The dynamic adjustments are based on the 

http://dx.doi.org/10.1016/j.bdr.2015.03.001
2214-5796/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.bdr.2015.03.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:trya3473@uni.sydney.edu.au
mailto:young.lee@mq.edu.au
http://dx.doi.org/10.1016/j.bdr.2015.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2015.03.001&domain=pdf


T. Ryan, Y.C. Lee / Big Data Research 2 (2015) 110–116 111

resource requirements of each task as well as current levels of 
resource utilisation and resource contention on each node in a 
given distributed computing system, or simply cluster. The idea is 
that a common set of resources can be dynamically multiplexed 
in several fine-grained resource allocation tiers to enable multiple 
tasks with different resource usage characteristics to “harmonious-
ly” share the resource set. Rather than relying on a centralised 
scheduler, resource allocations are adjusted locally on each node, 
allowing for very fine-grain control. This distributed resource man-
agement approach can be combined with any existing scheduler. 
It also decreases scheduler complexity, allowing for greater scal-
ability. Note that our MTRA is a resource management technique 
underneath any schedulers that deal with the globalisation of the 
resource allocation. The current implementation of MTRA primar-
ily deals with CPU and IO resources although it potentially capable 
of dealing with other resources, such as network resources.

Our main focus is on MapReduce applications within a Hadoop 
YARN environment. Resource management strategies in Hadoop 
are based on the idea of logical partitions of resources. Tradition-
ally, these have been statically configured, a process which is itself 
an ongoing research issue. Since different tasks require different 
amounts and kinds of resources, configuration in heterogeneous 
environments is even more problematic. Our preliminary solution 
to this problem is Local Resource Shaper (LRS) [6] that enables 
local resources (CPU core and disks) to be shared primarily by 
two tiers allowing dynamic movement of tasks between resource 
allocation tiers. While this model is shown to improve resource 
utilisation while minimising resource contention in Classic Hadoop, 
we show that it does not account well for task heterogeneity. With 
regard to both application and environment heterogeneity, MTRA 
enables optimal performance by adjusting allocations to maximise 
resource utilisation and minimise resource contention for the re-
source requirements of each task.

Our evaluation shows that by accounting for heterogeneity, our 
MTRA technique improves system performance. MTRA is compara-
ble or better than the previous best resource management alterna-
tive for a range of MapReduce benchmarks with different resource 
usage characteristics, including outperforming the two-tier alloca-
tion model [6]. For individual MapReduce benchmarks, we observe 
performance improvements of up to 18% compared to Hadoop 
YARN. We show that for a workload model based on a Facebook 
production workload, MTRA reduces individual job execution times 
by 10% on average and up to 56% for individual jobs in the work-
load. These results prove that MTRA improves performance by a 
significant margin in real-world, heterogeneous environments.

The rest of this paper is organised as follows. Section 2 gives 
background. Section 3 presents our multi-tier resource allocation 
technique and describes the application of MTRA to MapReduce in 
Hadoop YARN. Section 4 presents our evaluation on the efficacy 
of MTRA. Section 5 discusses the related work. Finally, Section 6
concludes the paper.

2. Background

In this section, we begin by some background on big data and 
cloud computing, and then provide essential works and application 
used in this paper.

2.1. Big data and cloud computing

The recent trend of so-called ‘Big Data’ is expected to be rather 
norm as the volume of data exponentially increases literally in 
every area—business, science, and daily life to name a few. To-
day, some claim that data (more specifically, data-intensive sci-
ence/computing) are the fourth paradigm in scientific research 

after experimentation/observation, theory, and computational sim-
ulation [7]. Efficient data storage and timely data processing is 
of great practical importance. Clearly, this requires both massive 
storage and processing capacity. While some data processing deals 
with simple retrieval or search (IO-intensive), other case involves 
much computation on data (mixture usage of IO and CPU re-
sources); hence, application heterogeneity.

Cloud computing has emerged as a new computing paradigm 
with its strengths in elasticity and pay-as-you-go pricing, and it is 
a viable solution to many ICT services including big data process-
ing. Cloud computing in this context refers to the Infrastructure-
as-a-Service model, such as that provided by Amazon Elastic Com-
pute Cloud (EC2) [8] or Google Compute Engine [9]. This model 
has many advantages, including elasticity, scalability, and using a 
pay-as-you-go pricing system [10]. All of these properties have im-
plications for cluster environments, in terms of economics (only 
paying for what you need) and performance (such as the shared-
tenant hardware and unpredictable datacentre loads). The use of 
public cloud providers is associated with performance overheads 
due to a range of factors. Individual nodes, or ‘instances’, are based 
in virtual machines (VMs) which do not necessarily correspond 
to physical machines. This representation of instances provides a 
lot of control, however information such as the network topology 
within the datacentre is unavailable; this has means we cannot 
guarantee our nodes will be provisioned on the same server or 
rack, leading to inconsistent communication times between nodes. 
Additionally, it is likely that instances will “statically” share a phys-
ical machine with other cloud users, with potential performance 
impacts if an instance is co-located with a resource-greedy neigh-
bour.

2.2. MapReduce and Hadoop

The MapReduce framework is a widely used programming 
paradigm for distributed environments [1]. MapReduce provides an 
abstraction away from the details of parallelising computation; the 
framework automatically divides a job into individual tasks, han-
dles scheduling of individual tasks, distributes data and deals with 
machine failures. The basic MapReduce model expresses computa-
tions as a ‘Map’ and a ‘Reduce’ function. Hadoop is a framework 
for the execution of MapReduce jobs. Classic Hadoop has been 
widely used and studied since its release, but we focus on the 
more recently developed Hadoop YARN [5]. Both Classic Hadoop 
and Hadoop YARN use the idea of dividing resources into logical 
partitions (called ‘slots’ and ‘containers’ respectively) which are as-
signed to executing tasks.

2.3. Local resource shaper for MapReduce

The Local Resource Shaper (LRS) for MapReduce [6] modi-
fies the slot-based resource allocation approach used in Classic 
Hadoop. Rather than statically configured Map and Reduce slots, 
LRS introduces the idea of a dual purpose task slot. LRS ‘shapes’ 
task resource usage by allocating resources to tasks in a tier-based 
model. Tasks are split into Active and Passive tiers, with resources 
allocated such that the Active task uses as much resources as pos-
sible to maintain its original usage, while the Passive task uses 
resources unused by the Active task. In Classic Hadoop, resources 
are allocated based on a slot model, with each slot representing 
a partition of resources. LRS pairs slots such that for each Active 
task (i.e., slot), there is an associated Passive task. This means that 
within each pair, the two tasks have complementary resource us-
age; for example, while the Active task waits on I/O operations 
to complete, the Passive task is able to use the otherwise wasted 
CPU resources. This approach is shown to significantly increase re-
source utilisation while minimising resource contention, resulting 



Download English Version:

https://daneshyari.com/en/article/414245

Download Persian Version:

https://daneshyari.com/article/414245

Daneshyari.com

https://daneshyari.com/en/article/414245
https://daneshyari.com/article/414245
https://daneshyari.com

