Higher-order triangular-distance Delaunay graphs: Graph-theoretical properties

Ahmad Biniaz*, Anil Maheshwari, Michiel Smid
School of Computer Science, Carleton University, Ottawa, Canada

A R T I C L E I N F O

Article history:

Received 29 August 2014
Accepted 13 July 2015
Available online 21 July 2015

Keywords:

Triangular distance
Delaunay graph
Hamiltonian cycle
Matching

Abstract

We consider an extension of the triangular-distance Delaunay graphs (TD-Delaunay) on a set P of points in general position in the plane. In TD-Delaunay, the convex distance is defined by a fixed-oriented equilateral triangle ∇, and there is an edge between two points in P if and only if there is an empty homothet of ∇ having the two points on its boundary. We consider higher-order triangular-distance Delaunay graphs, namely k-TD, which contains an edge between two points if the interior of the smallest homothet of ∇ having the two points on its boundary contains at most k points of P. We consider the connectivity, Hamiltonicity and perfect-matching admissibility of k-TD. Finally we consider the problem of blocking the edges of k-TD.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The triangular-distance Delaunay graph of a point set P in the plane, TD-Delaunay for short, was introduced by Chew [12]. A TD-Delaunay is a graph whose convex distance function is defined by a fixed-oriented equilateral triangle. Let ∇ be a downward equilateral triangle whose barycenter is the origin and one of whose vertices is on the negative y-axis. A homothet of ∇ is obtained by scaling ∇ with respect to the origin by some factor $\mu \geq 0$, followed by a translation to a point b in the plane: $b+\mu \nabla=\{b+\mu a: a \in \nabla\}$. In the TD-Delaunay graph of P, there is a straight-line edge between two points p and q if and only if there exists a homothet of ∇ having p and q on its boundary and whose interior does not contain any point of P. In other words, (p, q) is an edge of TD-Delaunay graph if and only if there exists an empty downward equilateral triangle having p and q on its boundary. In this case, we say that the edge (p, q) has the empty triangle property.

We say that P is in general position if the line passing through any two points from P does not make angles $0^{\circ}, 60^{\circ}$, and 120° with horizontal. In this paper we consider point sets in general position and our results assume this pre-condition. If P is in general position, then the TD-Delaunay graph is a planar graph, see [7]. We define $t(p, q)$ as the smallest homothet of ∇ having p and q on its boundary. See Fig. 1(a). Note that $t(p, q)$ has one of p and q at a vertex, and the other one on the opposite side. Thus,

Observation 1. Each side of $t(p, q)$ contains either p or q.

[^0]

Fig. 1. (a) Triangular-distance Delaunay graph (0-TD), (b) 1-TD graph, the light edges belong to $0-\mathrm{TD}$ as well, and (c) Delaunay triangulation.

A graph G is connected if there is a path between any pair of vertices in G. Moreover, G is k-connected if there does not exist a set of at most $k-1$ vertices whose removal disconnects G. In case $k=2, G$ is called biconnected. In other words a graph G is biconnected iff there is a simple cycle between any pair of its vertices. A matching in G is a set of edges in G without common vertices. A perfect matching is a matching which matches all the vertices of G. A Hamiltonian cycle in G is a cycle (i.e., closed loop) through G that visits each vertex of G exactly once. For $H \subseteq G$ we denote the bottleneck of H, i.e., the length of the longest edge in H, by $\lambda(H)$.

Let $K_{n}(P)$ be a complete edge-weighted geometric graph on a point set P which contains a straight-line edge between any pair of points in P. For an edge (p, q) in $K_{n}(P)$ let $w(p, q)$ denote the weight of (p, q). A bottleneck matching (resp. bottleneck Hamiltonian cycle) in P is defined to be a perfect matching (resp. Hamiltonian cycle) in $K_{n}(P)$, in which the weight of the maximum-weight edge is minimized. A bottleneck biconnected spanning subgraph of P is a spanning subgraph, $G(P)$, of $K_{n}(P)$ which is biconnected and the weight of the longest edge in $G(P)$ is minimized.

A tight lower bound on the size of a maximum matching in a TD-Delaunay graph, i.e. 0-TD, is presented in [4]. In this paper we study higher-order TD-Delaunay graphs. The order-k TD-Delaunay graph of a point set P, denoted by k-TD, is a geometric graph which has an edge (p, q) iff the interior of $t(p, q)$ contains at most k points of P; see Fig. 1(b). The standard TD-Delaunay graph corresponds to 0-TD. We consider graph-theoretic properties of higher-order TD-Delaunay graphs, such as connectivity, Hamiltonicity, and perfect-matching admissibility. We also consider the problem of blocking TD-Delaunay graphs.

1.1. Previous work

A Delaunay triangulation (DT) of P (which does not have any four co-circular points) is a graph whose distance function is defined by a fixed circle \bigcirc centered at the origin. DT has an edge between two points p and q iff there exists a homothet of \bigcirc having p and q on its boundary and whose interior does not contain any point of P; see Fig. 1(c). In this case the edge (p, q) is said to have the empty circle property. The order- k Delaunay Graph on P, denoted by k-DG, is defined to have an edge (p, q) iff there exists a homothet of \bigcirc having p and q on its boundary and whose interior contains at most k points of P. The standard Delaunay triangulation corresponds to 0-DG.

For each pair of points $p, q \in P$ let $D[p, q]$ be the closed disk having $p q$ as diameter. A Gabriel Graph on P is a geometric graph which has an edge between two points p and q iff $D[p, q]$ does not contain any point of $P \backslash\{p, q\}$. The order- k Gabriel Graph on P, denoted by k-GG, is defined to have an edge (p, q) iff $D[p, q]$ contains at most k points of $P \backslash\{p, q\}$.

For each pair of points $p, q \in P$, let $L(p, q)$ be the intersection of the two open disks with radius $|p q|$ centered at p and q, where $|p q|$ is the Euclidean distance between p and q. A Relative Neighborhood Graph on P is a geometric graph which has an edge between two points p and q iff $L(p, q)$ does not contain any point of P. The order-k Relative Neighborhood Graph on P, denoted by k-RNG, is defined to have an edge (p, q) iff $L(p, q)$ contains at most k points of P. It is obvious that for a fixed point set, k-RNG is a subgraph of k-GG, and $k-G G$ is a subgraph of k-DG.

The problem of determining whether an order-k geometric graph always has a (bottleneck) perfect matching or a (bottleneck) Hamiltonian cycle is of interest. In order to show the importance of this problem we provide the following example. Gabow and Tarjan [15] showed that a bottleneck matching of maximum cardinality in a graph can be computed in $O\left(m \cdot(n \log n)^{0.5}\right)$ time, where m is the number of edges in the graph. Using their algorithm, a bottleneck perfect matching of a point set can be computed in $O\left(n^{2} \cdot(n \log n)^{0.5}\right)$ time; note that the complete graph on n points has $\Theta\left(n^{2}\right)$ edges. Chang et al. [11] showed that a bottleneck perfect matching of a point set is contained in 16-DG; this graph has $\Theta(n)$ edges and can be computed in $O(n \log n)$ time. Thus, by running the algorithm of Gabow and Tarjan on 16 -DG, a bottleneck perfect matching of a point set can be computed in $O\left(n \cdot(n \log n)^{0.5}\right)$ time.

If for each edge (p, q) in $K_{n}(P), w(p, q)$ is equal the Euclidean distance between p and q, then Chang et al. [9-11] proved that a bottleneck biconnected spanning graph, bottleneck perfect matching, and bottleneck Hamiltonian cycle of P are contained in $1-$ RNG, $16-$ RNG, $19-$ RNG, respectively. This implies that 16 -RNG has a perfect matching and $19-\mathrm{RNG}$ is Hamiltonian. Since k-RNG is a subgraph of k-GG, the same results hold for $16-G G$ and $19-G G$. It is known that $k-G G$ is $(k+$ 1)-connected [8] and 10-GG (and hence 10-DG) is Hamiltonian [16]. Dillencourt showed that every Delaunay triangulation (0-DG) admits a perfect matching [14] but it can fail to be Hamiltonian [13].

https://daneshyari.com/en/article/414248

Download Persian Version:
https://daneshyari.com/article/414248

Daneshyari.com

[^0]: .र. Research supported by NSERC.

 * Corresponding author.

 E-mail address: ahmad.biniaz@gmail.com (A. Biniaz).
 http://dx.doi.org/10.1016/j.comgeo.2015.07.003
 0925-7721/© 2015 Elsevier B.V. All rights reserved.

