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Given a simple polygon P in the plane, we present new data structures for computing the 
weak visibility polygon from any query line segment in P . We build a data structure in 
O (n) time and space that can compute the visibility polygon for any query line segment 
s in O (k logn) time, where k is the size of the visibility polygon of s and n is the number 
of vertices of P . Alternatively, we build a data structure in O (n3) time and space that can 
compute the visibility polygon for any query line segment in O (k + log n) time. In order 
to develop these data structures, we obtain many other results that may be interesting in 
their own right.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Given a simple polygon P of n vertices in the plane, two points in P are visible to each other if the line segment joining 
them lies in P . For a line segment s in P , a point p is weakly visible (or visible for short) to s if s has at least one point that 
is visible to p. The weak visibility polygon (or visibility polygon for short) of s, denoted by Vis(s), is the set of all points in P
that are visible to s. The weak visibility query problem is to build a data structure for P such that Vis(s) can be computed 
efficiently for any query line segment s in P .

This problem has been studied before. Bose et al. [3] built a data structure of O (n3) size in O (n3 log n) time that can 
compute Vis(s) in O (k log n) time for any query, where k is the size of Vis(s). Throughout this paper, we always let k denote 
the size of Vis(s) for any query line segment s. Bygi and Ghodsi [4] gave an improved data structure with the same size and 
preprocessing time as that in [3] but its query time is O (k + log n). Aronov et al. [1] proposed a smaller data structure of 
O (n2) size with O (n2 log n) preprocessing time and O (k log2 n) query time. Table 1 gives a summary. If the problem is to 
compute Vis(s) for a single segment (not queries), then there is an O (n) time algorithm [12].

1.1. Our contributions

In this paper, we present two new data structures whose performances are also given in Table 1. Our first data structure, 
which is built in O (n) time and O (n) space, can compute Vis(s) in O (k log n) time for any query segment s. Comparing with 
the data structure in [1], our data structure reduces the query time by a logarithmic factor and uses much less preprocessing 
time and space.

The preprocessing time and size of our second data structure are both O (n3), and each query takes O (k + log n) time. 
Comparing with the result in [4], our data structure has less preprocessing time. In addition, our solution, which is based 
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Table 1
A summary of the data structures. The value k is the size of Vis(s) for any query segment s.

Data structure Preprocessing time Size Query time

[3] O (n3 logn) O (n3) O (k logn)

[4] O (n3 logn) O (n3) O (k + log n)

[1] O (n2 logn) O (n2) O (k log2 n)

Our Result 1 O (n) O (n) O (k logn)

Our Result 2 O (n3) O (n3) O (k + log n)

Fig. 1. Illustrating a window v w of p.

on the approach in [3], is simpler than that in [4]. Further and more importantly, our techniques explore many geometric 
observations on the problem that may be useful elsewhere. In particular, we prove a tight combinatorial bound for the 
“zone” in a line segment arrangement contained in a simple polygon, as follows, which is interesting in its own right.

Let S be a set of (possibly intersecting) line segments in a simple polygon P such that both endpoints of each segment 
of S are on ∂P (i.e., the boundary of P). Let A be the arrangement formed by the segments in S and the edges of ∂P . For 
any line segment s in P (whose endpoints need not be on ∂P), the zone of s, denoted by Z(s), is defined to be the set of 
faces of A that intersect s. For each edge of any face in A, it either lies on a segment of S or lies on ∂P . Let Λ be the 
number of edges of the faces in Z(s) each of which lies on a segment of S . We want to find a good upper bound for Λ. 
By using the zone theorem for the general line segment arrangement [9], we can easily obtain Λ = O (|S|α(|S|)), where 
α(·) is the inverse Ackermann function [14]. In this paper, we prove a tight bound Λ = O (m), where m ≤ |S| is the number 
of segments in S each of which contains at least one edge of the faces in Z(s). An immediate application of this result is 
that we obtain an efficient query algorithm for our second data structure. Since combinatorial bounds on arrangements are 
fundamental, this result may find other applications as well.

The rest of this paper is organized as follows. In Section 2, we review some geometric structures and an algorithmic 
scheme that will be used by the query algorithms of both our data structures. We will also give a “ray-rotating” data 
structure in Section 2, which is needed by our first data structure in Section 3. In Sections 3 and 4, we present our first 
and second data structures, respectively. As a by-product of our second data structure, the combinatorial bound of the zone 
mentioned above is also given in Section 4. Section 5 concludes the paper.

2. Preliminaries

In this section, we review some geometric structures and discuss an algorithmic scheme that will be used by the query 
algorithms of both our data structures given in Sections 3 and 4. We will also give a “ray-rotating” data structure in Sec-
tion 2.1, which is needed by our first data structure in Section 3.

For simplicity of discussion, we assume no three vertices of P are collinear; we also assume for any query segment s, 
s is not collinear with any vertex of P and each endpoint of s is not collinear with any two vertices of P . As in [1,3], our 
approaches can be easily extended to the general situation.

Denote by ∂P the boundary of P . The visibility graph of P is a graph whose vertex set consists of all vertices of P
and whose edge set consists of edges defined by all visible pairs of vertices of P . Here, two adjacent vertices on ∂P are 
considered visible to each other. Throughout the paper, we use K to denote the size of the visibility graph of P . Note that 
K = O (n2) and K = Ω(n). The visibility graph can be computed in O (K ) time [15].

We discuss the visibility decomposition of P [1,3]. Consider a point p in P and a vertex v of P . Suppose the line segment 
pv is in P , i.e., p is visible to v . Suppose v is a reflex vertex. If we extend pv along the direction from p to v , then we 
will stay inside P . Let w be the point on the boundary of P that is hit first by our above extension of pv (e.g., see Fig. 1). 
We call the line segment v w the window of p. The point p is called the defining point of the window and the vertex v is 
called the anchor vertex of the window. It is well known that the boundary of the visibility polygon of the point p consists 
of parts of ∂P and the windows of p [1,3]. If the point p is a vertex of P , then as in [1], the window v w is called a 
critical constraint of P , and p is called the defining vertex of the critical constraint. For example, in Fig. 2, both upu and vpv
are critical constraints; for upu , its anchor vertex is u and its defining vertex is v , and for vpv , its anchor vertex is v and 
defining vertex is u. It is easy to see that the total number of critical constraints is O (K ) because each critical constraint 
corresponds to a visible vertex pair of P and a visible vertex pair corresponds to at most two critical constraints.

As in [1,3], we represent the visibility polygon Vis(s) of a segment s by a cyclic list of the vertices and edges of P in the 
order in which they appear on the boundary of Vis(s), and we call such a list the combinatorial representation of Vis(s) [1]. 
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