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In this paper, we show that the L1 geodesic diameter and center of a simple polygon can be 
computed in linear time. For the purpose, we focus on revealing basic geometric properties 
of the L1 geodesic balls, that is, the metric balls with respect to the L1 geodesic distance. 
More specifically, in this paper we show that any family of L1 geodesic balls in any simple 
polygon has Helly number two, and the L1 geodesic center consists of midpoints of shortest 
paths between diametral pairs. These properties are crucial for our linear-time algorithms, 
and do not hold for the Euclidean case.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let P be a simple polygon with n vertices in the plane. The diameter and radius of P with respect to a certain metric d
are very natural and important measures of P . The diameter with respect to d is defined to be the maximum distance over 
all pairs of points in P , that is, maxp,q∈P d(p, q), while the radius is defined to be the min–max value minp∈P maxq∈P d(p, q). 
Here, the polygon P is considered as a closed and bounded space and thus the diameter and radius of P with respect to d
are well defined. A pair of points in P realizing the diameter is called a diametral pair. Similarly, any point c such that 
maxq∈P d(c, q) is equal to the radius is called a center. In this paper we study how fast can we compute these measures 
(and whenever possible, to also obtain the set of points that realize them).

One of the most natural metrics on a simple polygon P is induced by the length of the Euclidean shortest paths that stay 
within P , namely, the (Euclidean) geodesic distance. The problem of computing the diameter and radius of a simple polygon 
with respect to the geodesic distance has been intensively studied in computational geometry since the early 1980s. The 
diameter problem was first studied by Chazelle [6], who gave an O (n2)-time algorithm. The running time was afterwards 
improved to O (n log n) by Suri [21]. Finally, Hershberger and Suri [11] presented a linear-time algorithm based on a fast 
matrix search technique. Recently, Bae et al. [3] considered the diameter problem for polygons with holes.

The first algorithm for finding the Euclidean geodesic radius was given by Asano and Toussaint [2]. In their study, they 
showed that any simple polygon has a unique center, and provided an O (n4 log n)-time algorithm for computing it. The 
running time was afterwards reduced to O (n log n) by Pollack, Sharir, and Rote [17]. Since then, it has been a longstanding 
open problem whether the center can be computed in linear time (as also mentioned later by Mitchell [14]).

✩ A preliminary version of this paper appeared in the proceedings of the 11th Latin American Theoretical INformatics Symposium (LATIN’14) [4].
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Table 1
Summary of currently best results on computing the diameter and radius of a simple polygon P with respect to various metrics on P .

Metric Restriction on P Diameter Radius

Geodesic Euclidean simple O (n) [11] O (n log n) [17]
L1 rect. simple O (n) [18] O (n) [18]

simple O (n) [Theorem 18] O (n) [Theorem 24]

Link regular simple O (n logn) [20] O (n log n) [8,13]
rectilinear rect. simple O (n) [15] O (n) [16]

Another popular metric with a different flavor is the link distance, which measures the smallest possible number of links 
(or turns) of piecewise linear paths. The currently best algorithms that compute the link diameter or radius run in O (n log n)

time [8,13,20]. The rectilinear link distance measures the minimum number of links when feasible paths in P are constrained 
to be rectilinear. Nilsson and Schuierer [15,16] showed how to solve the problem under the rectilinear link distance in linear 
time.

In order to tackle the open problem of computing the Euclidean geodesic center, we investigate another natural metric: 
the L1 metric. To the best of our knowledge, only a special case where the input polygon is rectilinear has been considered 
in the literature. This result is given by Schuierer [18], where he showed how to compute the L1 geodesic diameter and 
radius of a simple rectilinear polygon in linear time.

This paper aims to provide a clear and complete exposition on the diameter and radius of general simple polygons with 
respect to the L1 geodesic distance. We first focus on revealing basic geometric properties of the geodesic balls (that is, the 
metric balls with respect to the L1 geodesic distance). Among other results, we show that any family of L1 geodesic balls 
has Helly number two (see Theorem 11). This is a crucial property that does not hold for the Euclidean geodesic distance, 
and thus we identify that the main difficulty of the open problem lies there.

We then show that the method of Hershberger and Suri [11] for computing the Euclidean diameter extends to L1
metrics, and that the running time is preserved. However, the algorithms for computing the Euclidean radius do not easily 
extend to rectilinear metrics. Indeed, even though the approach of Pollack et al. [17] can be adapted for the L1 metric, 
the running time is O (n log n). On the other hand, the algorithm of Schuierer [18] for rectilinear simple polygons heavily 
exploits properties derived from rectilinearity. Thus, its extension to general simple polygons is not straightforward either.

In this paper we use a different approach: using our Helly-type theorem for L1 geodesic balls, we show that the set of 
points realizing L1 geodesic centers coincides with the intersection of a finite number of geodesic balls. Afterwards we show 
how to compute their intersection in linear time. Table 1 summarizes the currently best results on computing the diameter 
and radius of a simple polygon with respect to the most common metrics, including our new results.

2. Preliminaries

For any subset A ⊂R2, we denote by ∂ A and int A the boundary and the interior of A, respectively. For p, q ∈R2, denote 
by pq the line segment with endpoints p and q. For any path π in R2, let |π | be the length of π under the L1 metric, or 
simply the L1 length. Note that |pq| equals the L1 distance between p and q.

The following is a basic observation on the L1 length of paths in R2. A path is called monotone if any vertical or 
horizontal line intersects it in at most one connected component.

Fact 1. For any monotone path π between p, q ∈R2, it holds that |π | = |pq|.

Let P be a simple polygon with n vertices. We regard P as a compact set in R2, so its boundary ∂ P is contained in P . 
An L1 shortest path between p and q is a path joining p and q that lies in P and minimizes its L1 length. The L1 geodesic 
distance d(p, q) is the L1 length of an L1 shortest path between p and q. We are interested in two quantities: the L1 geodesic 
diameter diam(P ) and radius rad(P ) of P , defined to be diam(P ) := maxp,q∈P d(p, q) and rad(P ) := minp∈P maxq∈P d(p, q). 
Any pair of points p, q ∈ P such that d(p, q) = diam(P ) is called a diametral pair. A point c ∈ P is said to be an L1 geodesic 
center if and only if maxq∈P d(c, q) = rad(P ). We denote by cen(P ) the set containing all L1 geodesic centers of P .

Analogously, a path lying in P minimizing its Euclidean length is called the Euclidean shortest path. It is well known 
that there is always a unique Euclidean shortest path between any two points in a simple polygon [9]. We let π2(p, q) be 
the unique Euclidean shortest path from p ∈ P to q ∈ P . The following states a crucial relation between Euclidean and L1
shortest paths in a simple polygon.

Fact 2. (See Hershberger and Snoeyink [10].) For any two points p, q ∈ P , the Euclidean shortest path π2(p, q) is also an L1
shortest path between p and q.

Notice that this does not imply coincidence between the Euclidean and the L1 geodesic diameters or centers, as the 
lengths of paths are measured differently (see an example in Fig. 1). Nonetheless, Fact 2 enables us to exploit structures for 
Euclidean shortest paths such as the shortest path map.
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