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Let G be a unit disk graph in the plane defined by n disks whose positions are known. For 
the case when G is unweighted, we give a simple algorithm to compute a shortest path 
tree from a given source in O(n logn) time. For the case when G is weighted, we show 
that a shortest path tree from a given source can be computed in O(n1+ε) time, improving 
the previous best time bound of O(n4/3+ε).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Each set S of geometric objects in the plane defines its intersection graph in a natural way: the vertex set is S and there 
is an edge ss′ in the graph, s, s′ ∈ S , whenever s ∩ s′ �= ∅. It is natural to seek faster algorithms when the input is constraint 
to geometric intersection graphs. Here we are interested in computing shortest path distances in unit disk graphs, that is, 
the intersection graph of equal sized disks.

A unit disk graph is uniquely defined by the centers of the disks. Thus, we will drop the use of disks and just refer to 
the graph G(P ) defined by a set P of n points in the plane. The vertex set of G(P ) is P . Each edge of G(P ) connects points 
p and p′ from P whenever ‖p − p′‖ ≤ 1, where ‖ · ‖ denotes the Euclidean norm. See Fig. 1 for an example of such a graph. 
Up to a scaling factor, G(P ) is isomorphic to a unit disk graph. In the unweighted case, each edge pp′ ∈ E(G(P )) has unit 
weight, while in the weighted case, the weight of each edge pp′ ∈ E(G(P )) is ‖p − p′‖. In all our algorithms we assume that 
P is known. Thus, the input is P , as opposed to the abstract graph G(P ).

Exact computation of shortest paths in unit disks is considered by Roditty and Segal [15], under the name of bounded 
leg shortest path problem. They show that, for the weighted case, a shortest path tree can be computed in O(n4/3+ε)

time. They also note that the dynamic data structure for nearest neighbors of Chan [6] imply that, in the unweighted 
case, shortest paths can be computed in O(n log6 n) expected time. (Roditty and Segal [15] also consider data structures to 
(1 + ε)-approximate shortest path distances in the intersection graph of congruent disks when the size of the disks is given 
at query time; they improve previous bounds of Bose et al. [4]. In this paper we do not consider that problem.)
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Fig. 1. Example of graph G(P ).

Alon Efrat pointed out that a semi-dynamic data structure described by Efrat, Itai and Katz [9] can be used to compute 
in O(n log n) time a shortest path tree in the unweighted case. Given a set of n unit disks in the plane, they construct 
in O(n log n) time a data structure that, in O(log n) amortized time, finds a disk containing a query point and deletes 
it from the set. By repetitively querying this data structure, one can build a shortest path tree from any given source in 
O(n log n) time in a straightforward way. At a very high level, the idea of the data structure is to consider a regular grid of 
constant-size cells and, for each cell of the grid, to maintain the set of disks that intersect it. This last problem, for each 
cell, reduces to the maintenance of a collection of upper envelopes of unit disks. Although the data structure is not very 
complicated, programming it would be quite challenging.

For the unweighted case, we provide a simple algorithm that in O(n log n) time computes a shortest path tree in G(P )

from a given source. Our algorithm is implementable and considerably simpler than the data structure discussed in the 
previous paragraph or the algorithm of Roditty and Segal. For the weighted case, we show how to compute a shortest 
path tree in O(n1+ε) time. (Here, ε denotes an arbitrary positive constant that we can choose and affects the constants 
hidden in the O-notation.) This is a significant improvement over the result of Roditty and Segal. In this case we use a 
simple modification of Dijkstra’s algorithm combined with a data structure to dynamically maintain a bichromatic closest 
pair under an Euclidean weighted distance.

Gao and Zhang [12] showed that the metric induced by a unit disk graph admits a compact well separated pair de-
composition, extending the celebrated result of Callahan and Kosaraju [5] for Euclidean spaces. For making use of the well 
separated pair decomposition, Gao and Zhang [12] obtain a (1 + ε)-approximation to shortest path distance in unit disk 
graphs in O(n log n) time. Here we provide exact computation within comparable bounds.

Chan and Efrat [7] consider a graph defined on a point set but with more general weights in the edges. Namely, it is 
assumed that there is a function �: R2 ×R

2 → R+ such that the edge pp′ gets weight �(p, p′). Moreover, it is assumed that 
the function �(p, p′) is increasing with ‖p − p′‖. When �(p, p′) = ‖p − p′‖2 f (‖p − p′‖) for a monotone increasing function 
f , then a shortest path can be computed in O(n log n) time. Otherwise, if � has constant size description, a shortest path 
can be computed in roughly O(n4/3) time.

There has been a vast amount of work on algorithmic problems for unit disk and a review is beyond our possibilities. 
In the seminal paper of Clark, Colbourn and Johnson [8] it was shown that several NP-hard optimization problems remain 
hard for unit disk graphs, although they showed the notable exception that maximum clique is solvable in polynomial time. 
Hochbaum and Maass [13] gave polynomial time approximation schemes for finding a largest independent set problems 
using the so-called shifting technique and there have been several developments since.

Shortest path trees can be computed for unit disk graphs in polynomial time. One can just construct G(P ) explicitly and 
run a standard algorithm for shortest paths. The main objective here is to obtain a faster algorithm that avoids the explicit 
construction of G(P ) and exploits the geometry of P . There are several problems that can be solved in polynomial time, 
but faster algorithms are known for geometric settings. A classical example is the computation of the minimum spanning 
tree of a set of points in the Euclidean plane. Using the Delaunay triangulation, the number of relevant edges is reduced 
from quadratic to linear. For more advanced examples see Vaidya [16], Efrat, Itai and Katz [9], Eppstein [11], or Agarwal, 
Overmars and Sharir [3].

Organization In Section 2 we consider the unweighted case and in Section 3 we consider the weighted case. We conclude 
listing some open problems.

2. Unweighted shortest paths

In this section we consider the unweighted version of G(P ) and compute a shortest path tree from a given point s ∈ P . 
Pseudocode for the eventual algorithm is provided in Fig. 2. Before moving into the details, we provide the main ideas 
employed in the algorithm.

As it is usually done for shortest path algorithms we use tables dist[·] and π [·] indexed by the points of P to record, 
for each point p ∈ P , the distance d(s, p) and the ancestor of p in a shortest (s, p)-path. We start by computing the De-
launay triangulation DT(P ) of P . We then proceed in rounds for increasing values of i, where at round i we find the 
set W i of points at distance exactly i in G(P ) from the source s. We start with W0 = {s}. At round i, we use DT(P )

to grow a neighborhood around the points of W i−1 that contains W i . More precisely, we consider the points adjacent 
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