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We present an algorithm to compute a rigid motion that approximately maximizes the
volume of the intersection of two convex polytopes P1 and P2 in R

3. For all ε ∈
(0,1/2] and for all n � 1/ε, our algorithm runs in O (ε−3n log3.5 n) time with probability
1 − n−O (1) . The volume of the intersection guaranteed by the output rigid motion is a (1 −
ε)-approximation of the optimum, provided that the optimum is at least λ · max{|P1|, |P2|}
for some given constant λ ∈ (0,1].

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Shape matching is a common task in many object recognition problems. A translation or rigid motion of one shape is
sought that maximizes some similarity measure with another shape. Convex shape matching algorithms have been used in
tracking regions in an image sequence [10] and measuring symmetry of a convex body [8]. We define the overlap of two
convex shapes to be the volume of their intersection, which is a robust similarity measure [12]. In this paper, we consider
the problem of finding the maximum overlap of two convex polytopes in R

3 under rigid motion.
Efficient algorithms have been developed for two convex n-gons in the plane. De Berg et al. [5] developed an algorithm

to find the maximum overlap of two convex polygons under translation in O (n log n) time. Ahn et al. [4] presented two
algorithms to find a (1 − ε)-approximate maximum overlap, one for the translation case and another for the rigid motion
case. They assume that the polygon vertices are stored in arrays in clockwise order around the polygon boundaries. Ahn
et al.’s algorithms run in O (ε−1 logn + ε−1 log(1/ε)) time for the translation case and O (ε−1 log n + ε−2 log(1/ε)) time
for the rigid motion case. Cheong et al. [7] gave an algorithm to align two simple polygons P1 and P2 by a rigid motion
so that their overlap is at least the optimum minus ε · min{|P1|, |P2|}. The running time is O ((n3/ε8) log5 n). Cheng and
Lam [6] recently improved the running time to O ((n3/ε4) log5/3 n log5/3 n

ε ). Finding the exact maximum overlap under rigid
motion seems difficult. A brute force approach is to subdivide the space of rigid motion (−π,π ] × R

2 into cells so that
the intersecting pairs of polygon edges do not change within a cell. The hope is to obtain a formula for the maximum
overlap within a cell as the intersection does not change combinatorially, and then compute the maximum of the formula.
Unfortunately, the subdivision of (−π,π ] × R

2 has curved edges and facets. Also the formula is a sum of a large number
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of fractions, and optimizing the formula seems to require solving a high-degree polynomial system. These issues make it a
challenge to optimize the formula in a cell.

Fewer algorithmic results are known concerning the maximum overlap of two convex polytopes in R
d for d � 3. Let n

be the number of hyperplanes defining the convex polytopes. Ahn et al. [2] developed an algorithm to find the maximum
overlap of two convex polytopes under translation in O (n(d+1−3/d)�d/2� logd+1 n) expected time. Recently, Ahn, Cheng and
Reinbacher [3] have obtained substantially faster algorithms to align two convex polytopes under translation in R

d for d � 3.
The overlap computed is no less than the optimum minus μ, where μ is any small constant fixed in advance. The running
times are O (n log3.5 n) for R3 and O (n�d/2�+1 logd n) for d � 4, and these time bounds hold with probability 1−n−O (1) . There
is no specific prior result concerning the maximum overlap of convex polytopes under rigid motion. Vigneron [13] studied
the optimization of algebraic functions and one of the applications is the alignment of two possibly non-convex polytopes
under rigid motion. For any ε ∈ (0,1) and any two convex polytopes with n defining hyperplanes, Vigneron’s method can
return in O (ε−Θ(d2)nΘ(d3)(log n

ε )Θ(d2)) time an overlap under rigid motion that is at least 1 − ε times the optimum. Finding
the exact overlap is even more challenging in R

3.
In this paper, we present a new algorithm to approximate the maximum overlap of two convex polytopes P1 and P2

in R
3 under rigid motion. For the purpose of shape matching, it often suffices to know that two input shapes are very

dissimilar if this is the case. Therefore, we are only interested in matching P1 and P2 when their maximum overlap under
rigid motion is at least λ ·max{|P1|, |P2|} for some given constant λ ∈ (0,1], where |Pi | denotes the volume of Pi . Under this
assumption, for all ε ∈ (0,1/2] and for all n � 1/ε, our algorithm runs in O (ε−3n log3.5 n) time with probability 1 − n−O (1)

and returns a rigid motion that achieves a (1−ε)-approximate maximum overlap. The assumption can be verified as follows.
Run our algorithm using λ/2 instead of λ. Check if the overlap output by our algorithm is at least (1 − ε)λ · max{|P1|, |P2|}.
If not, we know that the assumption is not satisfied. If yes, the maximum overlap is at least (λ/2) · max{|P1|, |P2|} and our
algorithm’s output is a (1 − ε)-approximation because we used λ/2 in running the algorithm. Our high-level strategy has
two steps. First, sample a set of rotations. Second, for each sampled rotation, apply it and then apply the almost optimal
translation computed by Ahn et al.’s algorithm [3]. Finally, return the best answer among all rigid motions tried.

If one uses a very fine uniform discretization of the rotation space, it is conceptually not difficult to sample rotations so
that the resulting approximation is good. The problem is that such a discretization inevitably leads to a running time that
depends on some geometric parameters of P1 and P2. In order to obtain a running time that depends on n and ε only, we
cannot use a uniform discretization of the entire rotation space. Indeed, our contribution lies in establishing some structural
properties that allow us to discretize a small subset of the rotation space, and exploiting this discretization in the analysis
to prove the desired approximation. This approach is also taken in the 2D case in [4], but our analysis is not an extension
of that in [4] as the three-dimensional situation is very different.

2. Similar polytopes

In this section, we show that P1 and P2 are “similar” under the assumption that their maximum overlap is at least
λ · max{|P1|, |P2|}. We use the Löwner–John ellipsoid [11] to identify three axes of P1 and P2. For every convex body P
in R

d , it is proven by Löwner that there is a unique smallest ellipsoid E that contains P . Then John proved that 1
d E is

contained in P . There are various algorithms for finding an ellipsoid of this flavor.

Lemma 1. (See [11].) Let P be a convex body with m vertices in R
3 . For every η > 0, an ellipsoid E(P ) can be computed in O (m/η)

time such that 1
3(1+η)

E(P ) ⊂ P ⊂ E(P ).

For i ∈ {1,2}, we use E(Pi) to denote the ellipsoid guaranteed by Lemma 1 for Pi , using the setting of η = 1/3. There
are three mutually orthogonal directed lines αi , βi and γi through the center of E(Pi) such that |αi ∩E(Pi)| and |γi ∩E(Pi)|
are the shortest and longest, respectively, among all possible directed lines through the center of E(Pi). After fixing αi and
γi , there are two choices for βi and any one will do. We call these directed lines the αi -, βi -, and γi -axes of Pi . The lengths
ai = |αi ∩ E(Pi)|, bi = |βi ∩ E(Pi)|, and ci = |γi ∩ E(Pi)| are the three principal diameters of E(Pi). Notice that ai � bi � ci .
Define amin = min{a1,a2}, bmin = min{b1,b2}, and cmin = min{c1, c2}. The following result gives an upper bound on the
maximum overlap of P1 and P2.

Lemma 2. For i ∈ {1,2}, let Ri be a box with side lengths ai , bi , and ci . The maximum overlap of R1 and R2 under rigid motion is at
most

√
2aminbmincmin .

Proof. Without loss of generality, we suppose that a1 is amin, that is, a1 � a2. If bmin = b1 and cmin = c1, then the maximum
overlap of R1 and R2 under rigid motion is |R1| = aminbmincmin. There are three cases left: (1) bmin = b2 and cmin = c2,
(2) bmin = b1 and cmin = c2, and (3) bmin = b2 and cmin = c1. For i ∈ {1,2}, let the ab-plane of Ri be the plane through the
center of Ri and parallel to the facets of side lengths ai and bi . The bc-plane and ac-plane of Ri are defined analogously.
Let Lab

i be the line through the center of Ri and perpendicular to the ab-plane of Ri . The lines Lbc
i and Lac

i are defined
analogously. In the rest of the proof, assume that R1 and R2 have been placed such that their overlap is maximum.



Download English Version:

https://daneshyari.com/en/article/414302

Download Persian Version:

https://daneshyari.com/article/414302

Daneshyari.com

https://daneshyari.com/en/article/414302
https://daneshyari.com/article/414302
https://daneshyari.com

