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We consider directed graphs with an upward planar drawing on the standing and the
rolling cylinders. These graphs properly extend the upward planar graphs in the plane. The
drawings allow complex curves for the edges with many zig-zags and windings around the
cylinder.
We show that the drawings can be simplified to polyline drawings with geodesics as
straight segments, at most two bends per edge, and vertices and bends on a grid of at most
cubic size. On the standing cylinder the edges do not wind and they wind at most once
around the rolling cylinder, where single windings can be unavoidable. The simplifications
can be computed efficiently in O(τn3) time, where τ is the cost of computing the point of
intersection of a curve and a horizontal line through a vertex.
Moreover, we provide a complete classification of the classes of (regular) upward planar
drawable graphs on the plane, the sphere, and the standing and rolling cylinders including
their strict and weak variants. Strict is upward in two dimensions and weak allows
horizontal lines. For upward planarity the standing and the rolling cylinders coincide in the
strict case, rolling dominates standing in the regular case, and there is an incomparability
in the weak case. The respective classes of graphs range properly between the upward
planar and the quasi-upward planar graphs, and they have an NP-hard recognition
problem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Graph drawing is mostly concerned with the problem to map a graph in the plane. The vertices are mapped to points
and the edges to Jordan curves between the endpoints. The objective is a nice drawing, which shall help the user to better
understand the structural relations modeled by the graph. Nice is formalized by aesthetics of the drawing, such as the
numbers of crossings and bends and the used area. Aesthetics convert to restrictions if they are absolute, such as planar
and straight line. Here we add unidirectional and shall consider upward planar graphs on the plane, the sphere, and the
standing and the rolling cylinders.

The task of drawing a graph consists of two phases: placement of the vertices and routing of the edges. The standard is
polylines for the edges with straight segments and bends [17,34]. So the curves have a discrete description and the drawing
is completely specified by the coordinates for the vertices and bends. In the straight-line approaches the placement and
routing phases are merged. More complex curves are used in freehand drawings and in a postprocessing phase if bends of
polylines are smoothed by splines [21] or spiral segments [5] or in Lombardi drawings with circular arcs [24].
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The full generality of Jordan curves is used in the definition of planar graphs and planar drawings. A drawing of a graph
is planar if it is one-to-one on the vertices and the curves are disjoint except at common endpoints. What does this really
mean? How complex are the curves? What do we know if we are given a planar drawing of a graph as a witness for pla-
narity (or any other property which depends on a drawing)? Jordan curves are continuous but not necessarily computable.
The curves may be highly complex with many turns and many windings around a cylinder. There may even be infinitely
many zig-zags, e.g., driven by the function f (t) = t sin 1

t with t → 0 if we accept this as a description. Infinitely many
windings with an ultimate convergence towards an endpoint are excluded by the continuity of a Jordan curve. However,
the number of windings can be arbitrarily large. For example, a curve may form a spiral with successive windings around
the cylinder at distance 2−i for i = 1, . . . , N , and N is, e.g., the value of Ackermann’s function A(n,m) with n and m as the
numbers of vertices and edges. For effective computations the curves must have a finite description, which is given by a
complete listing, a program or a Turing machine. However, such a description may be very long and exceed the size of the
graph by any (super-exponential) bound. Such a complexity would be out of scope of graph drawing and against common
standards.

To cope with the complexity of the description of Jordan curves we suppose that it takes time τ to compute the coordi-
nates of the intersection of an edge and a horizontal line through a vertex. τ may be huge. In the previous example with
windings described by Ackermann’s function one must evaluate the function. However, τ is at most O(1) in the resulting
drawings. On the standing cylinder and the sphere the polyline drawing can be computed in O(τn2) time, and it takes
O(τn3) time on the rolling cylinder and graphs of size n. This is a significant reduction of the description complexity of
upward planar drawings. The time bounds stem from the number of observable points where the curves are evaluated. This
seems easier than tracing the edges, particularly, if they zig-zag and frequently wind around the cylinder. So we bridge the
gap between drawings with arbitrary Jordan curves and polyline drawings, and we capture Jordan curves computationally
using a value τ for the computation of an intersection of curves in a neighborhood of vertices.

The accepted standard is polyline drawings. The common graph drawing algorithms fulfill this standard and draw undi-
rected graphs straight-line using force or energy based methods and draw directed graphs with few (at most two) bends per
edge using the hierarchical approach [17,34]. Also every planar graph has a planar polyline drawing as shown in [40]. The
proof is based on the existence of open discs, and does not provide an effective construction. In addition, it is well-known
that planar graphs admit straight-line drawings. This was first proved by Steinitz and Rademacher [43], Wagner [46] and
Stein [42] using the one-to-one correspondence between (triconnected) planar graphs and the mesh of convex polyhedra.
An alternative proof by Fáry [26] uses induction and is based on the fact that the outer face of a triangulated planar graph
can be drawn as a straight-line triangle. These investigations were finalized by de Fraysseix, Pach and Pollack [28] and by
Schnyder [41] who showed that every planar graph has a straight-line grid drawing of O(n2) area, which can be computed
in O(n) time.

Let’s consider direction. Directed graphs are commonly drawn as hierarchies using the approach of Sugiyama et al. [44].
For acyclic graphs this drawing style transforms the edge direction into a geometric direction: all edges point upward.
Otherwise, the approach proposes heuristics to redirect some edges and break all cycles. Alternatively, one may follow the
recurrent hierarchy approach suggested by Sugiyama et al. and elaborated by Bachmaier et al. [7]. It identifies the upper
and lower sides of a page and draws graphs on the surface of a rolling cylinder such that all edges are upward. The new
paradigm is: go with the flow and display cycles unidirectionally.

In this work we combine direction and planarity. We insist on both criteria and do not allow exceptions. In the plane this
leads to upward planar drawings. A graph is upward planar or an UP graph if it can be embedded in the plane such that the
curves of the edges are monotonically increasing in y-direction and there are no edge crossings. This is the regular case. Let
UP denote the respective class of graphs. UP graphs were intensively studied since the late 1980’s. They were characterized
as the spanning subgraphs of planar st-graphs, which are acyclic planar directed graphs with a single source s and a single
sink t and an edge from s to t [19,35]. Concerning the curve complexity upward planar graphs admit straight-line upward
drawings which may require an area of exponential size [20], or upward polyline drawings on quadratic area with at most
two bends per edge [19]. The recognition problem is NP-hard [29], in general, whereas there are efficient polynomial time
algorithms if the graphs are given with an embedding or are triconnected [13] or have a single source [14].

Upward planarity has been generalized to specific surfaces of solids in R3 and in particular the sphere, the standing
cylinder and the torus, see also [23,25,27,31,38,39]. A graph G is spherical upward planar or an SUP graph if it has an upward
planar drawing on the sphere or equivalently on the standing cylinder. G is rolling upward planar or an RUP graph if it has an
upward planar drawing on the rolling cylinder. Let SUP and RUP, denote the respective classes of graphs. They are central
for this work, which extends and improves [15].

Note that the surfaces of genus zero no longer coincide for upward planarity: the plane is weaker than the sphere
or the standing cylinder and these are weaker than the rolling cylinder. The graph from Fig. 1, called the ‘house’, is not
upward planar [17,35], but is can be drawn upward planar on the cylinders routing some edges over the backside, as Fig. 2
demonstrates. The ‘triple-house’ graph from Fig. 10 illustrates the differences between UP, SUP and RUP graphs by the
presence of zero to three of the curved edges. On the other hand, for every directed planar graph G there is a surface S of
genus zero such that G has an upward drawing on S [25]. S is obtained from a 2D drawing of the undirected graph and
the third dimension is used for the upward direction and is computed by topological sorting.

The properties of graphs with upward planar drawings on the sphere and the standing cylinder parallel those from
the plane. The distinction to the plane is an st-edge from the source to the sink, which prohibits routing edges over the
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