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Given a set S of n points in the plane and a fixed angle 0 < ω < π , we show how to
find in O (n log n) time all triangles of minimum area with one angle ω that enclose S . We
prove that in general, the solution cannot be written without cubic roots. We also prove
an Ω(n log n) lower bound for this problem in the algebraic computation tree model. If the
input is a convex n-gon, our algorithm takes Θ(n) time.
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1. Introduction

In geometric optimization, the goal is often to find an optimal object or optimal placement of an object subject to a
number of geometric constraints. Examples include finding the smallest circle enclosing a point set [8,10] or finding the
smallest circle enclosing at least k points of a point set of n points (k � n) [4,7]. In our setting, we study the following
problem: given a set S of n points in the plane, find all the triangles of minimum area with a fixed angle ω, 0 < ω < π ,
that enclose S . When no constraint is put on the angles, Klee and Laskowski [5] gave an O (n log2 n) time algorithm for
finding the minimum-area enclosing triangle. This was later improved to O (n log n) by O’Rourke et al. [9]. Bose et al. [2]
provided optimal algorithms for the setting where one wishes to find the minimum-area isosceles triangles with a fixed
angle. The setting we explore here is in between the two. We place a restriction on the angle but do not insist on the
triangle to be isosceles. Our solution, which we outline below, uses ideas from the solutions of Klee and Laskowski and
Bose et al.

The five main steps of the algorithm are presented in Sections 2, 3, 4, 5 and 6. Each section outlines one step, proves
the mathematical formulas involved and gives its time complexity. As we present in Section 5, at some point, the algorithm
needs to calculate the roots of a fourth degree polynomial. This is unfortunate when it comes to numerical robustness.
However, in Section 7, we show that we cannot dodge such algebraic expressions. Finally, we prove an Ω(n log n) lower
bound for this problem in the algebraic computation tree model.

2. Overview and preliminaries

Since the solution to the general problem only needs to consider the vertices of the convex hull of S , the first step is to
compute the convex hull. In the remainder of the paper, we assume that the input is a convex n-gon with vertices given in
clockwise order.
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Fig. 1. In this example, P is a quadrilateral and ω = 1
2 π .

Fig. 2. Step 1: Ω is the 1
2 π -cloud of P (n′ = 6).

Let P be a convex n-gon (refer to Fig. 1). We denote the edges and the vertices of P in clockwise order by ei and vi
for 0 � i � n − 1 (all index manipulation is modulo n). Here and in the following sections, as we present the algorithm, we
trace each step through the example of Fig. 1.

We begin with two definitions.

Definition 1 (ω-wedge). Let q be a point in the plane and ω be an angle (0 < ω < π ). Let R and R ′ be two rays emanating
from q such that the angle between R and R ′ is ω. We say that the closed set formed by q, R , R ′ and the points between
R and R ′ creates an ω-wedge, denoted by W(ω,q, R, R ′). The point q is called the apex of the ω-wedge. An ω-wedge W
touches a polygon P when P ⊆ W and both R and R ′ touch P , i.e. R ∩ P �= ∅ and R ′ ∩ P �= ∅ (refer to Fig. 1).

For the rest of the paper, when looking at an ω-wedge facing down, R represents the left ray and R ′ represents the right
ray (refer to Fig. 1). Also, when we make the ω-wedge turn around P , we do it clockwise.

Definition 2 (ω-cloud). Let P be a convex n-gon and ω be an angle (0 < ω < π ). By rotating an ω-wedge around P while
continually touching P , the apex traces a sequence of circular arcs that we call an ω-cloud (refer to Fig. 2).

There are many technical details involved in the solution to this problem. Before getting too caught up in these details,
let us first review the general approach to our solution.

Since we only consider enclosing triangles with an angle of ω, each optimal triangle can be constructed from an ω-wedge
that touches P . Therefore, we consider all possible ω-wedges that touch P . The apices of these ω-wedges lie on an ω-cloud
Ω which consists of a linear number of pieces of circular arcs (refer to [2]). Then, for each of these ω-wedges, it is possible
to find the minimal triangle by identifying a third side. For the triangle to be optimal, the midpoint of this third side has
to touch P (see Proposition 3 and Corollary 6). Hence, for each ω-wedge touching P , there is one and only one triangle to
consider for optimality.

Moreover, when the apex q of an ω-wedge W moves clockwise along the ω-cloud Ω , the midpoint m of the third side
of the optimal triangle moves clockwise along P (see Lemma 7). As W moves, we note the positions of q where m leaves
an edge of P and where m enters a new edge of P . These positions of q are important event points. They divide Ω into a
linear number of components (see Section 4). Let C be one of these components. We prove that the minimum-area triangle
having a vertex (hence an angle ω) on C can be computed in constant time (see Lemmas 10, 11, 12 and 13). We then have a
linear number of candidates (one for each piece of Ω) to consider rather than infinitely many if we had to take all possible
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