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Computers with multiple processor cores using shared memory are now ubiquitous.
In this paper, we present several parallel geometric algorithms that specifically target
this environment, with the goal of exploiting the additional computing power. The
algorithms we describe are (a) 2-/3-dimensional spatial sorting of points, as is typically
used for preprocessing before using incremental algorithms, (b) d-dimensional axis-
aligned box intersection computation, and finally (c) 3D bulk insertion of points into
Delaunay triangulations, which can be used for mesh generation algorithms, or simply
for constructing 3D Delaunay triangulations. For the latter, we introduce as a foundational
element the design of a container data structure that both provides concurrent addition
and removal operations and is compact in memory. This makes it especially well-suited for
storing large dynamic graphs such as Delaunay triangulations.
We show experimental results for these algorithms, using our implementations based on
the Computational Geometry Algorithms Library (CGAL). This work is a step towards what
we hope will become a parallel mode for CGAL, where algorithms automatically use the
available parallel resources without requiring significant user intervention.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is generally acknowledged that the microprocessor industry has reached the limits of the sequential performance of
processors. Processor manufacturers now focus on parallelism to keep up with the demand for high performance. Current
laptop computers all have 2 or 4 cores, and desktop computers can easily have 4 or 8 cores, with many more in high-end
computers. This trend incites application writers to develop parallel versions of their critical algorithms. This is not an easy
task, from both the theoretical and practical points of view.

Work on theoretical parallel algorithms began decades ago, even parallel geometric algorithms have received attention
in the literature. In the earliest work, Chow [1] addressed problems such as intersections of rectangles, convex hulls and
Voronoi diagrams. Since then, researchers have studied theoretical parallel solutions in the PRAM model, many of which
are impractical or inefficient in practice. This model assumes an unlimited number of processors, whereas in this paper, we
assume that the amount of available processors is significantly less than the input size. Both Aggarwal et al. [2] and Akl and
Lyons [3] are excellent sources of theoretical parallel modus operandi for many fundamental computational geometry prob-
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lems. The relevance of these algorithms in practice depends not only on their implementability, but also on the hardware
architecture targeted.

Programming tools and languages are evolving to better support parallel computing. Between hardware and applications,
there are several layers of software. The bottom layer, e.g., OpenMP, contains primitives for thread management and syn-
chronization, which builds on OS capabilities and hardware-supported instructions. On top of that, parallel algorithms can
be implemented in domain specific libraries, as we show in this paper for the Computational Geometry Algorithms Library
(CGAL) [4], which is a large collection of geometric data structures and algorithms. Finally, applications can use the implicit
parallelism encapsulated in such a library, without necessarily doing explicit parallel programming on this level.

In this paper, we focus on shared-memory parallel computers, specifically multi-core CPUs, which allow simultaneous
execution of multiple instructions on different cores. This explicitly excludes distributed memory systems as well as graphi-
cal processing units, which have local memory for each processor core and thus require special code to communicate. As we
are interested in practical parallel algorithms, it is important to base our work on efficient sequential code. Otherwise, there
is a risk of good relative speedups that lack practical interest and skew conclusions about the algorithms scalability. For this
reason, we decided to base our work upon CGAL, which already provides mature codes that are among the most efficient
for several geometric algorithms [5]. We investigate the following algorithms: (a) 2-/3-dimensional spatial sorting of points,
as is typically used for preprocessing before using incremental algorithms, (b) d-dimensional axis-aligned box intersection
computation, and finally (c) 3D bulk insertion of points in Delaunay triangulations, which can be used for mesh generation
algorithms, or simply for constructing 3D Delaunay triangulations.

The remainder of the paper is organized as follows: Section 2 describes our hardware and software platform; Section 3
contains the description of the thread-safe compact container used by the Delaunay triangulation; Sections 4, 5 and 6
describe our parallel algorithms, the related work and the experimental results for (a), (b) and (c) respectively; we conclude
and present future plans in Section 7.

2. Platform

2.1. OpenMP

For thread control, several frameworks of relatively high level exist, such as TBB [6] or OpenMP [7]. We decided to rely
on the latter, which is implemented by almost all modern compilers. As a new feature, the OpenMP specification in version
3.0 includes the #pragma omp task construct. This creates a task, i.e., a code block that is executed asynchronously.
Creating such tasks can be nested recursively. The enclosing region may wait for all direct children tasks to finish using
#pragma omp taskwait. A #pragma omp parallel region at the top level provides a user specified number of
threads to process the tasks. When a new task is spawned, the runtime system can decide to run it with the current thread
at once, or postpone it for processing by an arbitrary thread. If the task model is not fully appropriate, the program can also
just run a certain number of threads and make them process the problem.

2.2. Libstdc++ parallel mode

The C++ STL implementation distributed with the GCC features a so-called parallel mode [8] as of version 4.3, based on
the Multi-Core Standard Template Library [9]. It provides parallel versions of many STL algorithms. We use some of these
algorithmic building blocks, such as partition, nth_element and random_shuffle. The partition algorithm par-
titions a sequence with respect to a given pivot as in quicksort. Applying nth_element to a sequence places the element
with a given rank k at index k, and moves the smaller ones to the left, the larger ones to the right. The random_shuffle
routine is used to permute a sequence randomly.

2.3. Evaluation system

We evaluated the performance of our algorithms on an up-to-date machine, featuring two AMD Opteron 2350 quad-core
64-bit processors at 2 GHz and 16 GB of RAM. We used GCC 4.4 (for the algorithms using the task construct), enabling
optimization (-O3 and -DNDEBUG). If not stated otherwise, each test was run at least 10 times, and the average over all
running times was taken.

2.4. CGAL kernels

Algorithms in CGAL are parameterized by so-called kernels, which provide the type of points and accompanying
geometric predicates. In each case, we have chosen the kernel that is most efficient while providing appropriate ro-
bustness guarantees: Exact_predicates_inexact_constructions_kernel for Delaunay triangulation, and Sim-
ple_cartesian<double> for the other algorithms, since they perform only coordinate comparisons.
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