
Big Data Research 3 (2016) 24–28

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Analysis of a Network IO Bottleneck in Big Data Environments Based 

on Docker Containers ✩

P. China Venkanna Varma ∗, K. Venkata Kalyan Chakravarthy, V. Valli Kumari, 
S. Viswanadha Raju

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 June 2015
Received in revised form 29 November 2015
Accepted 1 December 2015
Available online 4 January 2016

Keywords:
Containers
Context switching
Docker
Hadoop
Map reduce

We live in a world increasingly driven by data with more information about individuals, companies and 
governments available than ever before. Now, every business is powered by Information Technology and 
generating Big data. Future Business Intelligence can be extracted from the big data. NoSQL [1] and 
Map-Reduce [2] technologies find an efficient way to store, organize and process the big data using 
Virtualization and Linux Container (a.k.a. Container) [3] technologies.
Provisioning containers on top of virtual machines is a better model for high resource utilization. As the 
more containers share the same CPU, the context switch latency for each container increases significantly. 
Such increase leads to a negative impact on the network IO throughput and creates a bottleneck in the 
big data environments.
As part of this paper, we studied container networking and various factors of context switch latency. We 
evaluate Hadoop benchmarks [5] against the number of containers and virtual machines. We observed a 
bottleneck where Hadoop [4] cluster throughput is not linear with the number of nodes sharing the same 
CPU. This bottleneck is due to virtual network layers which adds a significant delay to Round Trip Time 
(RTT) of data packets. Future work of this paper can be extended to analyze the practical implications 
of virtual network layers and a solution to improve the performance of big data environments based on 
containers.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Data are unorganized facts that need to be processed. When 
data are processed, organized and structured in a given context so 
as to make them useful, they are called Information [10]. Now, ev-
ery business is powered with Information Technology (IT) and gen-
erating big data. There is a potential demand to process big data 
for rapid and accurate business decisions. Data scientists divided 
big data into five dimensions: Volume, Value, Velocity, Variety and 
Veracity (simply Big data 5V’s). Volume refers to vast amounts 
of data generated every second. To create Value for the business, 
volumes of data should be processed to determine the relevance 
within the data sets. Velocity refers to the data processing at data 
gathering speed. Variety refers to managing, merging and process-
ing of structured and un-structured data. Veracity refers to the 
biases, noise and abnormality in data.

✩ This article belongs to Big Data Networking.

* Corresponding author.
E-mail addresses: pc.varma@gmail.com (P. China Venkanna Varma), 

tokalyankv@gmail.com (V. K.), vallikumari@gmail.com (V. Valli Kumari), 
svraju.jntu@gmail.com (S. Viswanadha Raju).

Virtualization technology became de facto standard for all pub-
lic and private cloud requirements. Virtualization has consolidated 
all the hardware components and created software redundancy 
layers for elastic work loads. Docker framework introduced man-
ageable Linux containers [3] called Docker Containers. Docker is an 
open platform for developers and system administrators to build, 
ship, and run distributed applications. Hadoop is an open-source 
software framework for storing and processing the big data in a 
distributed fashion on large clusters.

Nowadays, data centers are adopting Docker to provision 
Hadoop [4] Clusters (HC) for elastic work loads and multi-tenant 
service models. Hadoop cluster nodes requires good amount of 
CPU cycles, Random Access Memory (RAM) and Resource IO to 
execute Map-Reduce operations. Virtualization solved orchestra-
tion of the dynamic resources for data centers, but virtualization 
overhead is the biggest penalty. “Every single CPU cycle that goes 
to the Hypervisor is wasted,” and “Likewise every byte of RAM”. 
Containers solved orchestration of dynamic resources within an 
operating system by virtualizing necessary components. If a con-
tainer runs inside a VM then the network IO path has two extra 
virtual layers: one layer between Hypervisor and VM and another 
layer between VM and container. These two extra network virtual-

http://dx.doi.org/10.1016/j.bdr.2015.12.002
2214-5796/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.bdr.2015.12.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:pc.varma@gmail.com
mailto:tokalyankv@gmail.com
mailto:vallikumari@gmail.com
mailto:svraju.jntu@gmail.com
http://dx.doi.org/10.1016/j.bdr.2015.12.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2015.12.002&domain=pdf


P. China Venkanna Varma et al. / Big Data Research 3 (2016) 24–28 25

ization layers adds a significant delay to the RTT of data packets in 
the transmission.

We installed a Hadoop [4] cluster in our incubation lab and ex-
ecuted Hadoop benchmarks such as TestDFSIO-read [5], TestDFSIO-
write [5], TeraSort [5] and TeraGen [5] against the number of 
the containers (Hadoop cluster nodes). We considered three use 
cases: Native, VMs and Containers while executing benchmarks. 
Each use case executed and analyzed the throughput of Hadoop
cluster. TestDFSIO is a storage throughput test that is split into two 
parts: TestDFSIO-write writes 1 000 020 MB (about 1 TB) of data to 
HDFS, and TestDFSIO-read reads it back in. Because of the replica-
tion factor, the write test does twice as much I/O as the read test 
and generates substantial network traffic. These write tests spread 
across 140 map tasks. TeraSort sorts a large number of 100-byte 
records. It does considerable computation, networking, and storage 
I/O, and is often considered to be representative of real Hadoop
workloads. It splits into three parts: generation, sorting, and vali-
dation. TeraGen creates the data and is similar to TestDFSIO-write 
except that significant computation is involved in creating the ran-
dom data. The Map tasks write directly to HDFS so there is no 
reduce phase. TeraSort does the actual sorting and writes sorted 
data to HDFS in a number of partitioned files. A total of 280 Map 
tasks was used for TeraGen, 280 simultaneous (several thousand in 
all) Map tasks and 70 reduce [2] tasks for TeraSort, and 70 Map 
tasks for TeraValidate.

Based on test results, as the number of containers increases on 
a VM or a physical machine, there is a significant overhead on the 
big data operations. This overhead is due to a raise in the network 
IO RTT when the CPU is busy. If the CPU is busy, the network IO 
operation is in pending state and waiting for its scheduled slot 
to execute, this will increase the RTT of the network IO packet 
and leads to low network throughput. Ideally Hadoop throughput 
is linear, overall cluster throughput increases by adding new nodes. 
Based on our test results, we observed that the Hadoop cluster 
throughput is not linear with the nodes sharing the same CPU.

The outline of this paper is as follows: (1) Explore how con-
tainer networking works? (Section 2). (2) Identify the important 
factors of the CPU context switch latency (Section 3). (3) Identify 
the effects of virtual network layers on the RTT (Section 3). (4) Ex-
periment setup, big data environment and test cases (Section 4).
(5) Analysis of virtual layer overhead (Section 5). (6) Analysis of 
Hadoop cluster performance (Section 6). (7) Conclusion (Section 7).

2. Docker networking

Docker has a software Ethernet bridge called “docker0” build on 
top of Linux “bridge-utils” [6]. When docker starts, it will create a 
default bridge “docker0” inside the Linux kernel and a virtual sub-
net to exchange the packets between containers and host. Docker 
randomly chooses the IP address range not used by host and de-
fined by RFC 1918. When a container is created a pair of virtual 
interfaces will be initialized, those are similar to both the ends of 
a tube where a packet sent from one end will be delivered to an-
other end. One virtual interface given to the container and another 
one hooked into docker0 to communicate with host and other 
containers. Fig. 1 describes the docker’s docker0 and virtual inter-
faces. Communication between containers depends on the network 
topology and system firewall (iptables). By default docker0 bridge 
allows inter container communication. Docker never do changes to 
the iptables to allow a connection to docker0 bridge, it uses a flag 
“–iptables=false” when docker starts. Otherwise docker will add a 
default rule to the FORWARD chain with a blanket ACCEPT policy if 
you retain the default “—icc=true”, else will set the policy to DROP 
if “—icc=false”.

We observed that docker adds a network virtualization layer 
in the form of a software bridge which adds an extra hop in 

Fig. 1. Docker’s docker0 bridge and virtual network layers.

the network path which adds some delay in the network packet 
transmission. We analyzed this overhead compared to native host 
network IO throughput.

3. Identify the important factors of the CPU context switch 
latency

“Context switch is the process of storing and restoring the state 
(context) of a process so that execution can be resumed from the 
same point at a later time” [9]. Context switch is applicable to a 
set of running processes in the same Central Processing Unit (CPU). 
There is a significant time required by the OS kernel to save exe-
cution state of the current running processes to memory, and then 
resume state of another process.

3.1. Process scheduling algorithms

Process Scheduling Algorithms plays a key role in the Context 
Switching. Each algorithm developed based on a use case. There is 
no ideal algorithm developed for all the known use cases. There 
is no choice given to end users to tune the Scheduling Algo-
rithms. Improving the performance by tuning process scheduling 
algorithms is not in the scope of this paper.

3.2. Multiple-processor scheduling

Multiple-Processor Scheduling is a complicated concept. Main 
aim is to keep all the Processors busy to get the best throughput. 
But, if more and more context switch operations happened, that 
leads to less throughput. Improving the performance by tuning 
multiple-processor scheduling algorithms is also not in the scope 
of this paper.

3.3. Virtualization extensions

How to execute the various Virtual machine processes in the 
same CPU (Virtual CPU or Core), without compromising security? 
Is key for Virtualization extensions. To execute the process belongs 
to a Virtual Machine, hypervisor will add an extra layer on top of 
the existing Process Control Block (PCB) to identity the Virtual Ma-
chine and Process. Coding and decoding of this extra information 
will add a significant overhead in the process execution. Recent 
reports published that Round Trip Time (RTT) latency of a virtual 
machine process request is around 40 nm.

4. Experiment setup

Installed VMware ESXi v5.5 Operating System (OS) on a Dell 
PowerEdge server with Intel Core 2 Quad Processor Q9650, 128 GB 



Download English Version:

https://daneshyari.com/en/article/414509

Download Persian Version:

https://daneshyari.com/article/414509

Daneshyari.com

https://daneshyari.com/en/article/414509
https://daneshyari.com/article/414509
https://daneshyari.com

