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Let S be a finite set of points in the interior of a simple polygon P . A geodesic graph, 
G P (S, E), is a graph with vertex set S and edge set E such that each edge (a, b) ∈ E is the 
shortest geodesic path between a and b inside P . G P is said to be plane if the edges in E
do not cross. If the points in S are colored, then G P is said to be properly colored provided 
that, for each edge (a, b) ∈ E , a and b have different colors. In this paper we consider the 
problem of computing (properly colored) plane geodesic perfect matchings, Hamiltonian 
cycles, and spanning trees of maximum degree three.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let S be a set of n points in the interior of a simple polygon P with m vertices. For two points a and b in the interior 
of P , the geodesic, π(a, b), is defined to be the shortest path between a and b in the interior of P . A geodesic graph, G P (S, E), 
is a topological graph with vertex set S and edge set E such that each edge (a, b) ∈ E is the geodesic π(a, b) in P . If P is a 
convex polygon, then G P is a straight-line geometric graph.

Problems related to geodesic graphs have been of interest in recent years. Many problems and structures related to the 
Euclidean plane have been generalized to the geodesic setting, e.g., convex hull [10,19], furthest-point Voronoi diagram [5,6,
16], ham-sandwich cut [8], center of a point set [2,15,17]. In this paper we study Hamiltonian cycle, perfect matchings, and 
spanning trees in geodesic graphs.

Let π1 and π2 be two, possibly self-intersecting, curves. We say that π1 and π2 cross if by traversing π1 from one of its 
endpoints to the other endpoint, it intersects π2 and switches from one side of π2 to the other side [19].1 We say that π1
and π2 are non-crossing if they do not cross. Two non-crossing curves can share an endpoint or can “touch” each other. If 
π1 and π2 are geodesics in a simple polygon, then they can intersect only once. They may have common line segments, but 
once they break apart, they do not meet again. See Fig. 1. A geodesic graph is said to be plane if the edges in E are pairwise 
non-crossing.

If the points in S are colored, then a geodesic graph G P is said to be properly colored provided that, for each edge 
(a, b) ∈ E , a and b have different colors. For simplicity, in this paper we refer to a properly colored graph as a “colored 
graph”. Let {S1, . . . , Sk}, where k ≥ 2, be a partition of S . Let K P (S1, . . . , Sk) be the complete multipartite geodesic graph 
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1 Tousssaint [19] refers to this configuration as a “proper crossing”.
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Fig. 1. (a) Two crossing geodesics, and (b) two non-crossing geodesics.

Fig. 2. (a) A plane colored geodesic matching, and (b) a plane colored geodesic 3-tree. (For interpretation of the references to color in this figure, the reader 
is referred to the web version of this article.)

Fig. 3. A weakly simple polygon P whose interior is shaded, together with the corresponding simple polygon after perturbation.

on S that has an edge between every point in Si and every point in S j , for all 1 ≤ i < j ≤ k. Imagine the points in S to be 
colored, such that all the points in Si have the same color, and for i �= j, the points in Si have a different color from the 
points in S j . We say that S is a k-colored point set. Any colored geodesic graph, G P (S, E), is a subgraph of K P (S1, . . . , Sk).

If G P is a perfect matching, a spanning tree, or a Hamiltonian cycle, we call it a geodesic matching, a geodesic tree, or 
a geodesic Hamiltonian cycle, respectively. A colored matching is a geodesic matching in K P (S1, . . . , Sk). Similarly, a colored 
tree (resp. a colored Hamiltonian cycle) is a geodesic tree (resp. geodesic Hamiltonian cycle) in K P (S1, . . . , Sk). A plane colored 
matching is a colored matching in K P (S1, . . . , Sk) that is non-crossing. Similarly, a plane colored tree (resp. a plane colored 
Hamiltonian cycle) is a colored tree (resp. colored Hamiltonian cycle) that is non-crossing. Given a (colored) point set S
in the interior of a simple polygon P , we consider the problem of computing a plane colored geodesic matching, a plane 
colored geodesic 3-tree, and a plane geodesic Hamiltonian cycle in K P (S1, . . . , Sk). A t-tree is a tree of maximum degree t . 
See Fig. 2.

1.1. Preliminaries

We say that a set S of points in the pale is in general position if no three points of S are collinear. Moreover, we say that 
a set S of points in a simple polygon is geodesically in general position provided that, for any two points a and b in S , π(a, b)

does not contain any point of S \ {a, b}.
Toussaint [19] defined weakly-simple polygons—as a generalization of simple polygons—because in many situations con-

cerned with geodesic paths the regions of interest are not simple but weakly-simple. A weakly simple polygon is defined as 
a closed polygonal chain P = (p1, . . . , pm), possibly with repeated vertices, such that every pair of distinct vertices of P
partitions P into two non-crossing polygonal chains [19]. Alternatively, a closed polygonal chain P is weakly simple if its 
vertices can be perturbed by an arbitrarily small amount such that the resulting polygon is simple. See Fig. 3. From the 
computational complexity point of view, almost all data structures and algorithms developed for simple polygons work for 
weakly simple polygons with only minor modifications that do not affect the time or space complexity bounds. Hereafter, 
we consider a weakly simple polygon to be a simple polygon.

For two points a and b in the interior of a simple polygon P , π(a, b) consists of a sequence of straight-line segments. 
We refer to a and b as the external vertices of π(a, b), and refer to the other vertices of π(a, b) as internal vertices. Moreover, 
we refer to the line segment(s) of π(a, b) that are incident on a or b as the external segments and the other segments as 
internal segments. In the special case where π(a, b) is a straight-line segment, π(a, b) does not have any internal vertex nor 
any internal segment.

Observation 1. The set of internal vertices of any geodesic in a simple polygon P is a subset of the reflex vertices of P .
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