
Computational Geometry 55 (2016) 26–40

Contents lists available at ScienceDirect

Computational Geometry: Theory and 

Applications
www.elsevier.com/locate/comgeo

Orthogonal graph drawing with inflexible edges ✩,✩✩

Thomas Bläsius a,b,∗, Sebastian Lehmann a, Ignaz Rutter a,∗
a Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
b Hasso Plattner Institute, Potsdam, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 June 2015
Received in revised form 23 December 2015
Accepted 26 February 2016
Available online 3 March 2016

Keywords:
Orthgonal graph drawing
Bend minimization
Planar embedding
Parameterized algorithm
Computational complexity

We consider the problem of creating plane orthogonal drawings of 4-planar graphs (planar 
graphs with maximum degree 4) with constraints on the number of bends per edge. More 
precisely, we have a flexibility function assigning to each edge e a natural number flex(e), 
its flexibility. The problem FlexDraw asks whether there exists an orthogonal drawing such 
that each edge e has at most flex(e) bends. It is known that FlexDraw is NP-hard if 
flex(e) = 0 for every edge e [1]. On the other hand, FlexDraw can be solved efficiently 
if flex(e) ≥ 1 [2] and is trivial if flex(e) ≥ 2 [3] for every edge e.
To close the gap between the NP-hardness for flex(e) = 0 and the efficient algorithm for 
flex(e) ≥ 1, we investigate the computational complexity of FlexDraw in case only few 
edges are inflexible (i.e., have flexibility 0). We show that for any ε > 0 FlexDraw is 
NP-complete for instances with O (nε) inflexible edges with pairwise distance �(n1−ε)

(including the case where they induce a matching), where n denotes the number of 
vertices in the graph. On the other hand, we give an FPT-algorithm with running time 
O (2k · n · Tflow(n)), where Tflow(n) is the time necessary to compute a maximum flow in 
a planar flow network with multiple sources and sinks, and k is the number of inflexible 
edges having at least one endpoint of degree 4.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Bend minimization in orthogonal drawings is a classical problem in the field of graph drawing. We consider the following 
problem called OptimalFlexDraw. The input is a 4-planar graph G (from now on all graphs are 4-planar) together with 
a cost function coste : N → R ∪ {∞} assigned to each edge. We want to find an orthogonal drawing � of G such that ∑

coste(βe) is minimal, where βe is the number of bends of e in �. The basic underlying decision problem FlexDraw

restricts the cost function of every edge e to coste(β) = 0 for β ∈ [0, flex(e)] and coste(β) = ∞ otherwise, and asks whether 
there exists a valid drawing (i.e., a drawing with finite cost). The value flex(e) is called the flexibility of e. Edges with 
flexibility 0 are called inflexible.

Note that FlexDraw represents the important base case of testing for the existence of a drawing with cost 0 that is 
included in solving OptimalFlexDraw.

Garg and Tamassia [1] show that FlexDraw is NP-hard in this generality, by showing that it is NP-hard if every edge is 
inflexible. For special cases, namely planar graphs with maximum degree 3 and series-parallel graphs, Di Battista et al. [4]

✩ Partially supported by grant WA 654/21-1 of the German Research Foundation (DFG).
✩✩ A preliminary version of this paper has appeared as T. Bläsius, S. Lehmann, I. Rutter, Orthogonal graph drawing with inflexible edges, in: Proceedings 
of the 9th International Conference on Algorithms and Complexity, in: Lecture Notes in Computer Science, vol. 9070, Springer, 2015, pp. 153–166.

* Corresponding authors.
E-mail addresses: thomas.blaesius@hpi.de (T. Bläsius), sebastian@leemes.de (S. Lehmann), rutter@kit.edu (I. Rutter).

http://dx.doi.org/10.1016/j.comgeo.2016.03.001
0925-7721/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comgeo.2016.03.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:thomas.blaesius@hpi.de
mailto:sebastian@leemes.de
mailto:rutter@kit.edu
http://dx.doi.org/10.1016/j.comgeo.2016.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2016.03.001&domain=pdf


T. Bläsius et al. / Computational Geometry 55 (2016) 26–40 27

give an algorithm minimizing the total number of bends, which solves OptimalFlexDraw with coste(β) = β for each edge e. 
Their approach can be used to solve FlexDraw, as edges with higher flexibility can be modeled by a path of inflexible edges. 
Biedl and Kant [3] show that every 4-planar graph (except for the octahedron) admits an orthogonal drawing with at most 
two bends per edge. Thus, FlexDraw is trivial if the flexibility of every edge is at least 2. Bläsius et al. [2,5] tackle the 
NP-hard problems FlexDraw and OptimalFlexDraw by not counting the first bend on every edge. They give a polynomial 
time algorithm solving FlexDraw if the flexibility of every edge is at least 1 [2]. Moreover, they show how to efficiently 
solve OptimalFlexDraw if the cost function of every edge is convex and allows the first bend for free [5].

When restricting the allowed drawings to those with a specific planar embedding, the problem OptimalFlexDraw be-
comes significantly easier. Tamassia [6] shows how to find a drawing with as few bends as possible by computing a flow in 
a planar flow network. This flow network directly extends to a solution of OptimalFlexDraw with fixed planar embedding, 
if all cost functions are convex. Cornelsen and Karrenbauer [7] recently showed, that this kind of flow network can be solved 
in O (n3/2) time.

Contribution & outline In this work we consider OptimalFlexDraw for instances that may contain inflexible edges, clos-
ing the gap between the general NP-hardness result [1] and the polynomial-time algorithms in the absence of inflexible 
edges [2,5]. After presenting some preliminaries in Section 2, we show in Section 3 that FlexDraw remains NP-hard even 
for instances with only O (nε) (for any ε > 0) inflexible edges that are distributed evenly over the graph, i.e., they have 
pairwise distance �(n1−ε). This includes the cases where the inflexible edges are restricted to form very simple structures 
such as a matching.

On the positive side, we describe a general algorithm that can be used to solve OptimalFlexDraw by solving smaller 
subproblems (Section 4). This provides a framework for the unified description of bend minimization algorithms which cov-
ers both, previous work and results presented in this paper. We use this framework in Section 5 to solve OptimalFlexDraw

for series-parallel graphs with non-decreasing cost functions. This extends the algorithm by Di Battista et al. [4] to non-
biconnected series-parallel graphs and thus solves one of their open problems. Moreover, we allow a significantly larger set 
of cost functions (in particular, the cost functions may be non-convex).

In Section 6, we present our main result, which is an FPT-algorithm with running time O (2k ·n · Tflow(n)), where k is the 
number of inflexible edges incident to degree-4 vertices, and Tflow(n) is the time necessary to compute a maximum flow 
in a planar flow network of size n with multiple sources and sinks. Note that we can allow an arbitrary number of edges 
whose endpoints both have degree at most 3 to be inflexible without increasing the running time. Thus, our algorithm can 
also test the existence of a 0-bend drawing (all edges are inflexible) in FPT-time with respect to the number of degree-4 
nodes. This partially solves another open problem of Di Battista et al. [4]. We conclude with open questions in Section 7.

2. Preliminaries

2.1. Connectivity & the composition of graphs

A graph G is connected if there exists a path between every pair of vertices. A separating k-set S is a subset of vertices of 
G such that G − S is not connected. Separating 1-sets are called cutvertices and separating 2-sets separation pairs. A connected 
graph without cutvertices is biconnected and a biconnected graph without separation pairs is triconnected. The blocks of a 
connected graph are its maximal (with respect to inclusion) biconnected subgraphs.

An st-graph G is a graph with two designated vertices s and t such that G + st is biconnected and planar. The vertices 
s and t are called the poles of G . Let G1 and G2 be two st-graphs with poles s1, t1 and s2, t2, respectively. The series 
composition G of G1 and G2 is the union of G1 and G2 where t1 is identified with s2. Clearly, G is again an st-graph 
with the poles s1 and t2. In the parallel composition G of G1 and G2 the vertices s1 and s2 and the vertices t1 and t2 are 
identified with each other and form the poles of G . An st-graph is series-parallel, if it is a single edge or the series or parallel 
composition of two series-parallel graphs.

To be able to compose all st-graphs, we need a third composition. Let G1, . . . , G� be a set of st-graphs with poles si and 
ti associated with Gi . Moreover, let H be an st-graph with poles s and t such that H + st is triconnected and let e1, . . . , e�

be the edges of H . Then the rigid composition G with respect to the so-called skeleton H is obtained by replacing each edge 
ei of H by the graph Gi , identifying the endpoints of ei with the poles of Gi . It follows from the theory of SPQR-trees that 
every st-graph is either a single edge or the series, parallel or rigid composition of st-graphs [8,9].

2.2. SPQR-tree

The SPQR-tree T of a biconnected st-graph G containing the edge st is a rooted tree encoding series, parallel and rigid 
compositions of st-graphs that result in the graph G [8,9]. The leaves of T are Q-nodes representing the edges of G and 
thus the st-graphs we start with. The root of T is also a Q-node, representing the special edge st. Each inner node is 
either an S-node, representing one or more series compositions of its children, a P-node, representing one or more parallel 
compositions of its children, or an R-node, representing a rigid composition of its children.

Recall that the rigid composition is performed with respect to a skeleton. For an R-node μ, let H be the skeleton of the 
corresponding rigid composition with poles sμ and tμ . We call H + sμtμ the skeleton of the μ and denote it by skel(μ). 



Download English Version:

https://daneshyari.com/en/article/414576

Download Persian Version:

https://daneshyari.com/article/414576

Daneshyari.com

https://daneshyari.com/en/article/414576
https://daneshyari.com/article/414576
https://daneshyari.com

