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1. Introduction

In this paper we discuss a sphere coverage problem and, in this context, we propose an optimal coverage criterion
defining a center for a given set of points in space.

Suppose that a constellation of N points {P1, P, ..., Py} in R (the d-dimensional Euclidean space) is given. An arbitrary
point Q € RY is selected and the spheres Sp,(€2), having [QP;] as diameters, are defined. Hence the centers of Sp,(2) are
at $(2+ P;) and their radii are 3| — P, i=1,2,...,N.

Consider the union of these spheres Sp,(2), their surface “anchored” at €. First we prove that the resulting
d-dimensional shape always covers the convex hull CH{P1, P2, ..., Py} of the given points, hence its volume exceeds the
volume of this convex hull for all Q € RY. This leads to the following natural question: what is the location ©* which
minimizes the excess (or overflow) volume and hence the total volume of the shape, ¥q) = U1N=1 Sp;(2)?

Such a location, we claim, would be a natural candidate as a “center” for the constellation of points {P1, P2, ..., Pn}.

The problem of determining the point that gives the tightest cover with spheres, minimizing the excess volume beyond
the convex hull, is solved here for the planar case (i.e. d = 2). An illustration of this problem is presented in Fig. 1. The
result is the following: the optimal location Q*, is the so called Steiner center of the convex hull of the given points
{P1, P2, ..., Py} € R2. The Steiner center is a weighted centroid of the vertices of a convex polygon, the weights being
proportional to the exterior angles at the vertices (see Fig. 2). Hence, the Steiner center 25 of a convex polygon [V{V;...V(]
is also characterized as the point that yields the tightest disc cover with discs having [25V;] as diameters (j=1,2,...k).

For the d-dimensional case we conjecture that a similar result holds, however a proof is yet to be found. Some numerical
simulations that were performed in 3D seem to confirm this conjecture.
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Fig. 1. Illustration of the problem in 2 dimensions: For the set of points Pi,..., Ps, the (highlighted) convex hull polygon is defined by the vertices
Pq,..., P4. These vertices define 4 discs anchored at the arbitrary point .

Fig. 2. External turn angles.

1.1. Centers for point constellations

Finding meaningful centers for a collection of data points is a fundamental geometric problem in various data analysis
and operation research/facility location applications.

One of the interesting centers is the Steiner point (also known as the Steiner curvature centroid). The Steiner point of a
convex polygon in R?, is defined as the weighted centroid (i.e. center of mass) of the system obtained by placing a mass
equal to the magnitude of the exterior angle at each vertex [6]. The traditional characterization is therefore
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yielding explicitly
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where d(V;, Q) is the Euclidean distance from V; to Q and 6; are the external turn angles at the vertices V; of the convex
polygon, that sum to 27 (see Fig. 2).

Another characterization of the Steiner center is by projections [4]. Let Pf denote the projection of the point P; on the
unit vector uy = (cos@, sinf):

P?=U0<P1‘,U9> (3)

then the Steiner center is defined as:
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Furthermore, the Steiner center 25 of a convex shape has some very interesting properties, the nicest one being its

linearity with respect to Minkowski addition. Hence, if K1 and K, are two convex sets in R?, we have that

Qs(K1 @ K2) = Qs(K7) + €25(K2) (5)

where @ stands for vector addition, i.e.
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