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Let G = (V , E) and G ′ = (V ′, E ′) be two graphs. A k-inverse-adjacency-preserving mapping ρ
from G to G ′ is a one-to-many and onto mapping from V to V ′ satisfying the following: 
(1) Each vertex v ∈ V in G is mapped to a non-empty subset ρ(v) ⊂ V ′ in G ′ , the 
cardinality of ρ(v) is at most k; (2) if u �= v , then ρ(u) ∩ρ(v) = ∅; and (3) for any u′ ∈ ρ(u)

and v ′ ∈ ρ(v), if (u′, v ′) ∈ E ′ , then (u, v) ∈ E . A vertex u′ in ρ(u) is called a virtual location
for u.
Let ρ be a k-inverse-adjacency-preserving-mapping (k-IAPM for short) from G to G ′ . Let 
δ be a greedy drawing of G ′ into a metric space M. Consider a message from u to be 
delivered to v in G . Using the k-IAPM ρ from G to G ′, intuitively, one can treat the message 
to be routed as if it were from one virtual location u′ for u to one virtual location v ′ for v , 
except that all the virtual locations of a vertex u were identified with each other (which 
can be thought as instantaneously synchronized mirror sites for a particular website, for 
example). Then a routing path P ′ can be computed from u′ to v ′ while identifying all 
virtual locations for any vertex in G . Since ρ inversely preserves adjacency from G ′ to G , 
such a routing path P ′ corresponds to exactly one routing path P in G , which connects u
to v .
In this paper, we formalize the above intuition into a concept which we call k-greedy 
routing algorithm for a graph G with n vertices, where k refers to the maximum number of 
virtual locations any vertex of G can have. Using this concept, the result presented in [18]
can be rephrased as a 3-greedy routing algorithm for 3-connected plane graphs, where 
the virtual coordinates used are from 1 to 2n − 2. In this paper, we present a 2-greedy 
routing algorithm for 3-connected plane graphs, where each vertex uses at least one but 
at most two virtual locations numbered from 1 to 2n − 1. For the special case of plane 
triangulations (in a plane triangulation, every face is a triangle, including the exterior face), 
the numbers used are further reduced to from 1 to 	 5n+1

3 
. Hence, there are at least � n−1
3 �

vertices that use only one virtual location.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Routing is one of the most important algorithmic problems in networking. Extensive research has been devoted to dis-
cover efficient routing algorithms (see [4,13,17]). Routing was primarily done and still is mainly done via routing protocols 
(e.g., see [4,13,17]). This approach is space inefficient and requires considerable setup overhead, which makes it infeasible 
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Fig. 1. A star graph K1,7. u is at a void position.

for some networks (e.g., wireless sensor networks). Recently, an alternative approach geometric routing has been proposed. 
Geometric routing uses geometric coordinates of the vertices to compute the routing paths. The simplest geometric routing 
is greedy routing, in which a vertex simply forwards messages to a neighbor that is closer to the destination than itself. 
Greedy routing algorithms are conceptually simple and they only rely on local coordinates information to compute the rout-
ing paths. However, they cannot always guarantee message delivery. For example, for a star-shaped network K1,7 embedded 
in R2 in Fig. 1, greedy routing fails due to the fact that the node u is at a void position: all neighbors (only one) of u are 
farther from the destination v than itself in the embedding. As a matter of fact, K1,7 does not admit any greedy drawing at 
all in R2.

Many solutions have been sought to solve the delivery problem. In particular, an elegant solution was proposed by Rao 
et al. in [15]. Instead of using the real geometric coordinates (e.g., GPS coordinates), one could use graph drawing, based on 
the structure of a network G , to compute vertex coordinates in the drawing. The drawing coordinates are used as the virtual 
coordinates of the vertices of G . Then geometric routing algorithms rely on virtual coordinates to compute routes. Simply 
speaking, a greedy drawing is a drawing in which greedy routing works. More precisely:

Definition 1. (See [16].) Let M be a set. A metric function d(∗, ∗) of M is a function d : M × M → R that satisfies 
the following four conditions: (1) d(x, y) ≥ 0, for any x, y ∈ M; (2) d(x, y) = 0 if and only if x = y, for any x, y ∈ M; 
(3) d(x, y) = d(y, x); and (4) d(x, y) ≤ d(x, z) + d(z, y), for any x, y, z ∈M.

Let M be a set and d(∗, ∗) be a metric function of M. Let G = (V , E) be a graph.

1. A drawing of G into M is a mapping δ : V →M such that u �= v implies δ(u) �= δ(v).
2. A drawing δ is a greedy drawing with respect to d if for any two vertices u, v of G (u �= v), u has a neighbor w such 

that d(δ(u), δ(v)) > d(δ(w), δ(v)).

Consider any two vertices u �= v of G in the greedy drawing δ. According to the definition of a greedy drawing, it is easy 
to see that there is a virtual distance decreasing path between u and v in the drawing with respect to the metric function dδ

(see [16]). Namely, there is a path (u = v1, v2, · · · , vk = v) in G such that dδ(vi, v) > dδ(vi+1, v), for each i from 1 to k − 1. 
Therefore, greedy routing simply forwards the message from u to a neighbor w , which is closer to the destination v than u. 
The forwarding process continues and the distance to the destination v keeps dropping. Eventually, the distance becomes 0
and the message reaches the destination v . Therefore, when there is a greedy drawing of G into a metric space M, greedy 
routing always succeeds.

Later, intensive research focused on finding greedy routing algorithms via greedy drawings of certain category of graphs 
into certain metric spaces. The graphs under consideration are mostly 3-connected plane graphs. The metric spaces used 
were R2, R3, and hyperbolic plane, etc. For more information on various greedy routing algorithms via greedy drawings, 
we refer readers to [1,5,6,8,11,14–16,18].

Zhang et al. observed that greedy routing can be generalized to semi-metric spaces [18]. Instead of using greedy drawing 
of graphs into metric spaces, they used greedy embedding of graphs into semi-metric spaces for greedy routing purposes. We 
have the following from [18]:

Definition 2. (See [18].) Let S be a set. A semi-metric of S is a function d : S × S → R that satisfies the following three 
conditions: (1) d(x, y) ≥ 0, for any x, y ∈ S; (2) d(x, y) = 0 if and only if x = y, for any x, y ∈ S; and (3) d(x, y) = d(y, x), for 
any x, y ∈ S .

Let S be a set and d(∗, ∗) a semi-metric function of S . Let G = (V , E) be a graph.

1. An embedding of G into S is a mapping δ : V → S such that u �= v implies δ(u) �= δ(v).
2. An embedding δ is a greedy embedding with respect to d if for any two vertices u, v of G (u �= v), u has a neighbor w

such that d(δ(u), δ(v)) > d(δ(w), δ(v)).
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