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This paper presents an almost optimal algorithm that computes the Voronoi diagram of a 
set S of n line segments that may intersect or cross each other. If there are k intersections 
among the input segments in S , our algorithm takes O (nα(n) log n + k) time, where α(·)
denotes the inverse of the Ackermann function. The best known running time prior to 
this work was O ((n + k) log n). Since the lower bound of the problem is shown to be 
�(n log n +k) in the worst case, our algorithm is worst-case optimal for k = �(nα(n) log n), 
and is only a factor of α(n) away from any optimal-time algorithm, which is still unknown. 
For the purpose, we also present an improved algorithm that computes the medial axis or 
the Voronoi diagram of a polygon with holes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

There is no doubt that the Voronoi diagram is one of the most fundamental and the most well studied structure in 
computational geometry. Voronoi diagrams and their variations play an important role not only in computer science but 
also in many other fields in engineering and sciences, finding a lot of applications. For a comprehensive survey, we refer to 
Aurenhammer and Klein [2] or to a book by Okabe et al. [18].

In this paper, we are interested in the Voronoi diagram of line segments in the plane. As one of the most popular 
variants of the ordinary Voronoi diagram, the line segment Voronoi diagram has been extensively studied in the com-
putational geometry community, finding lots of applications in computer graphics, pattern recognition, motion planning, 
shape representation, and NC machining [11,14,17]. Also, computing line segment Voronoi diagram is used as a frequent 
subroutine of algorithms for more complex structures [3,8]. For the set of line segments that are disjoint or may inter-
sect only at their endpoints, a variety of optimal O (n log n)-time algorithms that compute the diagram are known. For 
example, Kirkpatrick [14], Lee [17], and Yap [21] presented divide-and-conquer algorithms, Fortune [10] presented a plane 
sweep algorithm, and a pure abstract approach to Voronoi diagrams by Klein [15] is also applied to yield an optimal time 
algorithm [16].

However, only few researches consider line segments that may intersect or cross each other freely. Let S be a set of n
arbitrary line segments in the plane and k be the number of intersecting pairs of the segments in S . Karavelas [12] presented 
an O ((n + k) log2 n) time algorithm that computes the Voronoi diagram of S in a robust way. In fact, one can easily achieve 
the time bound O ((n + k) log n) for computing the Voronoi diagram of S as follows: first, specify all the intersection points 
among the segments in S and consider the set S ′ of sub-segments obtained by cutting the original segments in S at the 
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Fig. 1. (a) The Voronoi diagram of two line segments. (b) The Voronoi diagram of six sites: two open line segments and four of their endpoints. Sites are 
depicted as black segments or dots, and Voronoi edges and vertices are as gray segments and dots.

intersection points. Then, S ′ consists of at most n + 2k line segments that can intersect only at endpoints, so we can apply 
any of the above existing algorithms. On the other hand, it is not difficult to see that the lower bound of the problem of 
computing the Voronoi diagram of line segments is �(n log n + k) in the worst case.

In this paper, we present an almost optimal algorithm that computes the Voronoi diagram of line segments. Our algo-
rithm takes O (nα(n) log n + k) time, where α(n) denotes the functional inverse of the Ackermann function. Since the lower 
bound is shown to be �(n log n + k), our algorithm is only a factor of α(n) away from the optimal running time, and is 
optimal for large k = �(nα(n) log n). To our best knowledge, prior to our result, there was no known algorithm better than 
the simple O ((n + k) log n)-time algorithm.

In order to achieve our main result, we also consider an interesting special case where S forms a polygon. In this case, 
the Voronoi diagram of S is closely related to the medial axis of S [9,17]. When S forms a simple polygon, it is known 
that its Voronoi diagram and medial axis can be computed in linear time by Chin et al. [9]. In this work, we extend their 
result into more general form of polygons, namely, weakly simple polygons and polygonal domains. In particular, we devise 
an O (m log(m + t) + t)-time algorithm that computes the Voronoi diagram or the medial axis of a given polygonal domain, 
where m denotes the total number of vertices of its holes and t denotes the number of vertices of its outer boundary. 
Note that our algorithm is strictly faster than any O (n log n) time algorithm when t is relatively larger than m. We exploit 
this algorithm for a polygonal domain as a subroutine of the O (nα(n) log n + k)-time algorithm that computes the Voronoi 
diagram of non-disjoint line segments.

The remaining of the paper is organized as follows: After introducing some preliminaries in Section 2, we present our 
algorithm that computes the Voronoi diagram of a polygonal domain in Section 3. Then, Section 4 is devoted to describe 
and analyze our algorithm that computes the Voronoi diagram of line segments.

2. Preliminaries

Throughout the paper, we use the following notations: For a subset A ⊂ R
2, we denote by ∂ A the boundary of A with 

the standard topology. For any two points p ∈ R
2 and q ∈R

2, let pq denote the line segment between p and q.

2.1. Voronoi diagrams of line segments

Let S be a set of n line segments in the plane R2. The Voronoi diagram VD(S) of S is a subdivision of the plane R2 into 
Voronoi regions R(s, S), defined to be

R(s, S) :=
⋂

s′∈S\{s}
{x ∈ R

2 | d(x, s) < d(x, s′)},

where d(x, s) denotes the Euclidean distance from point x to segment s.
As done in the literature [1,21], we regard each segment s ∈ S as three distinct sites: the two endpoints of s and the 

relative interior of s. We thus assume that the set S is implicitly the set of points and open line segments that form n
closed line segments. See Fig. 1. Note that each Voronoi edge of VD(S) is then either a straight or parabolic segment. The 
Voronoi vertices of VD(S) are distinguished into two kinds: those of one kind are proper vertices which are equidistant 
points from three distinct sites, while those of the other kind are simply the intersection points of S at which at least three 
Voronoi edges meet. Fig. 2 illustrates the Voronoi diagram of an example set of line segments.

When we are interested in the diagram VD(S) inside a compact region A ⊆ R
2, we shall write VDA(S) to denote the 

subdivision of A induced by VD(S). In other words, VDA(S) is obtained by intersecting the diagram VD(S) itself with A.
The following fact is well known as the star-shape or weak star-shape property of Voronoi regions of a point or an open 

line segment.

Lemma 1. If s ∈ S is a point, then R(s, S) is star-shaped with respect to s. If s ∈ S is an open line segment, then R(s, S) is weakly 
star-shaped in the sense that for any x ∈ R(s, S), the segment xsx is totally contained in R(s, S), where sx is the perpendicular foot 
from x to segment s.
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