On the edge crossing properties of Euclidean minimum weight Laman graphs ${ }^{\text {N }}$

Sergey Bereg ${ }^{\text {a }}$, Seok-Hee Hong ${ }^{\text {b }}$, Naoki Katoh ${ }^{\text {c,* }}$, Sheung-Hung Poon ${ }^{\text {d }}$, Shin-ichi Tanigawa ${ }^{\text {e }}$
${ }^{\text {a }}$ Department of Computer Science, University of Texas at Dallas, USA
${ }^{\text {b }}$ School of Information Technologies, University of Sydney, Australia
${ }^{\text {c }}$ Department of Architecture and Architectural Engineering, Kyoto University, Japan
${ }^{\text {d }}$ School of Computing and Informatics, Institut Teknologi Brunei, Gadong BE1410, Brunei Darussalam
${ }^{\text {e }}$ Research Institute for Mathematical Sciences, Kyoto University, Japan

A R TICLE IN F O

Article history:

Received 29 May 2015
Accepted 29 September 2015
Available online 19 October 2015

Keywords:

Laman graphs
Plane graphs
k-Planarity
Quasi-planarity
(k, l)-Sparse graphs

Abstract

This paper is concerned with the crossing number of Euclidean minimum-weight Laman graphs in the plane. We first investigate the relation between the Euclidean minimumweight Laman graph and proximity graphs, and then we show that the Euclidean minimum-weight Laman graph is quasi-planar and 6-planar. Thus the crossing number of the Euclidean minimum-weight Laman graph is linear in the number of points.

(C) 2015 Elsevier B.V. All rights reserved.

1. Introduction

A graph G is called Laman if $|E(G)|=2|V(G)|-3$ and $|E(H)| \leq 2|V(H)|-3$ for any subgraph H of G with $E(H) \neq \emptyset$. A Laman graph has a property of being minimally rigid in the plane if it is realized as a generic bar-joint framework [11,7]. A bar-joint framework is a straight-line realization of a graph in the plane, and by regarding each edge as a bar and each point as a joint the rigidity of such a graph can be defined in a natural way (see, e.g., [7]). One of the most fundamental results in combinatorial rigidity theory asserts that a graph G realized on a generic point set (i.e., the set of the coordinates is algebraically independent over the rational field) is rigid if and only if G contains a spanning Laman subgraph [11]. Laman graphs appear in a wide range of applications, not only statics but also mechanical design such as linkages, design of CAD systems, analysis of protein flexibility, and sensor network localization [17,16].

Throughout the paper, by a graph on a point set P we mean a graph drawn in the plane with straight-line edges and vertex set P. In this paper we shall consider a bar-joint framework as a straight-line drawing in the plane, and we shall analyze geometric properties of the Euclidean minimum-weight Laman graph $\operatorname{MLG}(P)$ on a planar point set P, that is, a Laman graph on P with the minimum total edge-length over all Laman graphs on P. Throughout this paper we assume that no

[^0]http://dx.doi.org/10.1016/j.comgeo.2015.10.002
0925-7721/© 2015 Elsevier B.V. All rights reserved.

Fig. 1. $\operatorname{MLG}(P)$ that has an edge crossing.

Fig. 2. $\operatorname{MLG}(P)$ that has $\Theta(|P|)$ edge crossings.
three points in P are collinear and all interpoint distances are distinct. The point set satisfying these assumptions is called semi-generic in this paper.

Our study is motivated by the well-known property of the Euclidean minimum spanning tree. For any semi-generic point set P on the plane, the Euclidean minimum spanning tree on $P(\operatorname{MST}(P)$ for short $)$ is plane, where a graph on a point set is called plane (or non-crossing) if two edges do not have an intersection except possibly at their endpoints.

Observe that both Laman graphs and spanning trees are characterized by similar sparsity conditions. In general, a graph G is called (k, l)-sparse if $|E(H)| \leq k|V(H)|-l$ for any subgraph H of G with $E(H) \neq \emptyset$, and a (k, l)-sparse graph is called (k, l)-tight if it has exactly $k|V(G)|-l$ edges (see, e.g., [12]). A spanning tree is a (1, 1)-tight graph while a Laman graph is a $(2,3)$-tight graph. (k, l)-sparse graphs have several common combinatorial properties such as being independent sets of a matroid. Hence a natural question is whether the Euclidean minimum-weight (k, l)-tight graph on a point set has a nice planarity property as does the Euclidean minimum-weight (1,1)-tight graphs in the plane. However it turns out that, unlike $\operatorname{MST}(P)$, $\operatorname{MLG}(P)$ may have a crossing in general (see Fig. 1) and there is a point set P for which MLG (P) has $\Theta(|P|)$ crossings as shown in Fig. 2.

One can describe the relation between $\operatorname{MST}(P)$ and the Delaunay triangulation in a detailed way by introducing the nearest neighbor graph, the relative neighborhood graph, the Gabriel graph and the Delaunay graph [15]. To define these graphs, we introduce some notation, which will be used throughout the paper. For two points $p, q \in \mathbb{R}^{2},\|p q\|$ denotes the Euclidean distance between p and q. We abuse the notation $p q$ to stand for $\|p q\|$ when there is no confusion. In particular, we write $p q<r s$ if the length of segment $p q$ is less than that of $r s$. The closed disk with the segment $p q$ as diameter is denoted by $D_{p q}$. Also, for a point $p \in \mathbb{R}^{2}$ and $r \in \mathbb{R}$, the closed disk (resp. circle) with center p and radius r is denoted by $D_{p}(r)$ (resp. $C_{p}(r)$).

In the $(k+1)$-nearest neighbor graph $(k+1)-\mathrm{NNG}(P)$, an edge $p q$ is included if and only if p is the i-th closest point among P from q for some $i \leq k+1$ or vice versa. In the k-relative neighborhood graph k-RNG $(P), p q$ is included if and only if $D_{p}(p q) \cap D_{q}(p q)$ contains at most k points among $P \backslash\{p, q\}$. In the k-Gabriel graph $k-G G(P), p q$ is included if and only if $D_{p q}$ contains at most k points among $P \backslash\{p, q\}$. In the k-Delaunay graph $k-D G(P), p q$ is included if and only if there is a circle through p and q that contains at most k other points. As is well-known, $0-\mathrm{DG}(P)$ is always a triangulation, called the Delaunay triangulation, if no four points lie on a circle. The following relations are classical (see for example [4,1,15]):

$$
\begin{aligned}
& (k+1)-\mathrm{NNG}(P) \subseteq k-\mathrm{RNG}(P) \subseteq k-\mathrm{GG}(P) \subseteq k-\mathrm{DG}(P) \\
& 1-\mathrm{NNG}(P) \subseteq \operatorname{MST}(P) \subseteq 0-\mathrm{RNG}(P)
\end{aligned}
$$

In this context, we prove the next relations. (The proof is given at the end of Section 2.)
Theorem 1.1. Let P be a semi-generic set of points in the plane. Then

$$
\operatorname{MST}(P) \cup 2-\mathrm{NNG}(P) \subseteq \operatorname{MLG}(P) \subseteq 1-\mathrm{GG}(P) \cap 2-\mathrm{RNG}(P)
$$

Ábrego et al. [1] recently investigated the crossing number and the maximum crossing number of proximity graphs, and they proved that $k-\mathrm{NNG}(P)$ has at most $k^{3} n$ crossings for any P while there is a point set P such that $k-G G(P)$ has $k^{2} n^{2} / 4+$ $o\left(k^{2} n^{2}\right)$ crossings if $k=o(n)$. This result and Theorem 1.1 give rise to the following question: Does MLG (P) contain a linear number of crossings for every point set P ? Our main theorem, proved in Section 4, affirmatively answers this question.

Theorem 1.2 (6-Planarity theorem). Let P be a semi-generic set of points in the plane. For every edge $a b \in \operatorname{MLG}(P)$, the number of edges crossing $a b$ is at most six.

Moreover, we prove the following theorem in Section 3.

https://daneshyari.com/en/article/414613

Download Persian Version:
https://daneshyari.com/article/414613

Daneshyari.com

[^0]: $\overrightarrow{4}$ An extended abstract of this paper appears in Proc. 24th International Symposium on Algorithms and Computation (ISAAC13), pp. 33-43, 2013.

 * Corresponding author.

 E-mail addresses: besp@utdallas.edu (S. Bereg), shhong@it.usyd.edu.au (S.-H. Hong), naoki.katoh@gmail.com (N. Katoh), sheung.hung.poon@gmail.com (S.-H. Poon), tanigawa@kurims.kyoto-u.ac.jp (S. Tanigawa).

