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This paper is concerned with the crossing number of Euclidean minimum-weight Laman 
graphs in the plane. We first investigate the relation between the Euclidean minimum-
weight Laman graph and proximity graphs, and then we show that the Euclidean 
minimum-weight Laman graph is quasi-planar and 6-planar. Thus the crossing number 
of the Euclidean minimum-weight Laman graph is linear in the number of points.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A graph G is called Laman if |E(G)| = 2|V (G)| − 3 and |E(H)| ≤ 2|V (H)| − 3 for any subgraph H of G with E(H) �= ∅. 
A Laman graph has a property of being minimally rigid in the plane if it is realized as a generic bar-joint framework [11,7]. 
A bar-joint framework is a straight-line realization of a graph in the plane, and by regarding each edge as a bar and each 
point as a joint the rigidity of such a graph can be defined in a natural way (see, e.g., [7]). One of the most fundamental 
results in combinatorial rigidity theory asserts that a graph G realized on a generic point set (i.e., the set of the coordinates 
is algebraically independent over the rational field) is rigid if and only if G contains a spanning Laman subgraph [11]. Laman 
graphs appear in a wide range of applications, not only statics but also mechanical design such as linkages, design of CAD 
systems, analysis of protein flexibility, and sensor network localization [17,16].

Throughout the paper, by a graph on a point set P we mean a graph drawn in the plane with straight-line edges and 
vertex set P . In this paper we shall consider a bar-joint framework as a straight-line drawing in the plane, and we shall 
analyze geometric properties of the Euclidean minimum-weight Laman graph MLG(P ) on a planar point set P , that is, a Laman 
graph on P with the minimum total edge-length over all Laman graphs on P . Throughout this paper we assume that no 

✩ An extended abstract of this paper appears in Proc. 24th International Symposium on Algorithms and Computation (ISAAC13), pp. 33–43, 2013.
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Fig. 1. MLG(P ) that has an edge crossing.

Fig. 2. MLG(P ) that has �(|P |) edge crossings.

three points in P are collinear and all interpoint distances are distinct. The point set satisfying these assumptions is called 
semi-generic in this paper.

Our study is motivated by the well-known property of the Euclidean minimum spanning tree. For any semi-generic point 
set P on the plane, the Euclidean minimum spanning tree on P (MST(P ) for short) is plane, where a graph on a point set 
is called plane (or non-crossing) if two edges do not have an intersection except possibly at their endpoints.

Observe that both Laman graphs and spanning trees are characterized by similar sparsity conditions. In general, a graph G
is called (k, l)-sparse if |E(H)| ≤ k|V (H)| − l for any subgraph H of G with E(H) �= ∅, and a (k, l)-sparse graph is called 
(k, l)-tight if it has exactly k|V (G)| − l edges (see, e.g., [12]). A spanning tree is a (1, 1)-tight graph while a Laman graph 
is a (2, 3)-tight graph. (k, l)-sparse graphs have several common combinatorial properties such as being independent sets 
of a matroid. Hence a natural question is whether the Euclidean minimum-weight (k, l)-tight graph on a point set has a 
nice planarity property as does the Euclidean minimum-weight (1, 1)-tight graphs in the plane. However it turns out that, 
unlike MST(P ), MLG(P ) may have a crossing in general (see Fig. 1) and there is a point set P for which MLG(P ) has �(|P |)
crossings as shown in Fig. 2.

One can describe the relation between MST(P ) and the Delaunay triangulation in a detailed way by introducing the 
nearest neighbor graph, the relative neighborhood graph, the Gabriel graph and the Delaunay graph [15]. To define these graphs, 
we introduce some notation, which will be used throughout the paper. For two points p, q ∈ R

2, ‖pq‖ denotes the Euclidean 
distance between p and q. We abuse the notation pq to stand for ‖pq‖ when there is no confusion. In particular, we write 
pq < rs if the length of segment pq is less than that of rs. The closed disk with the segment pq as diameter is denoted 
by D pq . Also, for a point p ∈ R

2 and r ∈ R, the closed disk (resp. circle) with center p and radius r is denoted by D p(r)
(resp. C p(r)).

In the (k + 1)-nearest neighbor graph (k + 1)-NNG(P ), an edge pq is included if and only if p is the i-th closest point 
among P from q for some i ≤ k + 1 or vice versa. In the k-relative neighborhood graph k-RNG(P ), pq is included if and only 
if D p(pq) ∩ Dq(pq) contains at most k points among P \ {p, q}. In the k-Gabriel graph k-GG(P ), pq is included if and only 
if D pq contains at most k points among P \ {p, q}. In the k-Delaunay graph k-DG(P ), pq is included if and only if there is a 
circle through p and q that contains at most k other points. As is well-known, 0-DG(P ) is always a triangulation, called the 
Delaunay triangulation, if no four points lie on a circle. The following relations are classical (see for example [4,1,15]):

(k + 1)-NNG(P ) ⊆ k-RNG(P ) ⊆ k-GG(P ) ⊆ k-DG(P )

1-NNG(P ) ⊆ MST(P ) ⊆ 0-RNG(P ).

In this context, we prove the next relations. (The proof is given at the end of Section 2.)

Theorem 1.1. Let P be a semi-generic set of points in the plane. Then

MST(P ) ∪ 2-NNG(P ) ⊆ MLG(P ) ⊆ 1-GG(P ) ∩ 2-RNG(P ).

Ábrego et al. [1] recently investigated the crossing number and the maximum crossing number of proximity graphs, and 
they proved that k-NNG(P ) has at most k3n crossings for any P while there is a point set P such that k-GG(P ) has k2n2/4 +
o(k2n2) crossings if k = o(n). This result and Theorem 1.1 give rise to the following question: Does MLG(P ) contain a linear 
number of crossings for every point set P ? Our main theorem, proved in Section 4, affirmatively answers this question.

Theorem 1.2 (6-Planarity theorem). Let P be a semi-generic set of points in the plane. For every edge ab ∈ MLG(P ), the number of 
edges crossing ab is at most six.

Moreover, we prove the following theorem in Section 3.
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