Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/apcata

Cobalt oxide catalyst for hydrolysis of sodium borohydride and ammonia borane

V.I. Simagina^a, O.V. Komova^{a,*}, A.M. Ozerova^a, O.V. Netskina^a, G.V. Odegova^a, D.G. Kellerman^b, O.A. Bulavchenko^a, A.V. Ishchenko^a

^a Boreskov Institute of Catalysis, Pr. Akademika Lavrentieva 5, Novosibirsk, 630090 Russia ^b Institute of Solid State Chemistry, Pervomaiskaya Street 91, Ekaterinburg, 620219 Russia

ARTICLE INFO

Article history: Received 3 August 2010 Received in revised form 21 December 2010 Accepted 21 December 2010 Available online 30 December 2010

Keywords: Cobalt boride Cobalt oxide Sodium borohydride Ammonia borane Hydrolysis

ABSTRACT

The catalytic properties of Co_3O_4 in NaBH₄ and NH₃BH₃ hydrolysis have been studied. Experiments were carried out at 20–40 °C using 0.12 M hydride solution. According to magnetic susceptibility measurements, FTIR, XRD, and TEM studies, Co_3O_4 is reduced to the ferromagnetic catalytically active Co_2B phase under the action of the NaBH₄ hydrolysis reaction medium. A correlation was found between the content of the cobalt boride phase formed *in situ* and catalyst activity. The reduction of Co_3O_4 in NH₃BH₃ proceeds at slower rate than in NaBH₄. The addition to a solution of NH₃BH₃ of even a small amount of NaBH₄ increases considerably the reduction rate of Co_3O_4 . Using a Co_3O_4 -based precursor instead of the widely used CoCl₂ leads to the formation of a stable catalytically active phase of cobalt boride.

© 2010 Elsevier B.V. All rights reserved.

(1)

1. Introduction

Today's hydrogen storage is one of the most important problems in hydrogen economy. Many studies to find effective storage materials have been performed but none has reached a level that is acceptable for practical applications. Among the various materials that have been intensively studied, the complex hydrides such as NaBH₄, LiBH₄, NaAlH₄, Mg(BH₄)₂, NH₃BH₃ are attractive hydrogen storage materials [1]. These compounds currently have no competitors in terms of hydrogen content. Sodium borohydride (NaBH₄) has attracted attention since the late 1990's because of its high content of hydrogen of as high as 10.7 wt.%, high stability of its alkali solutions, non-toxicity and fire-safety [2-4]. In addition, this hydride is the least expensive and commercially available. It is one of the best candidates to be used in portable devices [5]. In the last years ammonia borane (NH₃BH₃) was beginning to be seriously considered as a potential source of hydrogen [6-10]. Unlike most hydrides, this compound contains 19.6 wt.% of hydrogen and has a high stability in solid state and aqueous solutions at ambient temperatures and does not require special storage conditions [11].

NaBH₄ and NH₃BH₃ both liberate hydrogen upon hydrolysis at ambient temperature only in the presence of suitable catalysts as

shown in (1) and (2), respectively: NaBH₄+2H₂O \rightarrow NaBO₂+4H₂

 $NH_3BH_3 + 2H_2O \rightarrow NH_4BO_2 + 3H_2 \tag{2}$

Today, most of the published papers about the NaBH₄ and NH₃BH₃ hydrolysis deal with improvement of catalytic materials. Different acids and metal-based systems have been studied as catalysts for these hydrolysis processes [3,11]. The catalysts containing noble metals Pt, Rh, Ru (supported or not) have shown the best performance [2,12–14]. However the high cost of these catalysts has initiated studies into the development of catalytic systems not requiring noble metals. The most promising among them are the cobalt-based catalysts such as Co nanoparticles [15–17], Au@Co core-shell nanoparicles [18], cobalt salts [19–22], cobalt oxides [23–25], Cu/Co₃O₄ [26], cobalt borides [27–33], Co–P [34,35], supported Co-containing catalysts [36–40], etc.

Recently, the high catalytic activity of Co_3O_4 and $LiCoO_2$ in NaBH₄ hydrolysis was reported in [23–25]. It was suggested that in a NaBH₄ water solution these oxides can be reduced to an active cobalt boride phase. Reduction of water-soluble cobalt salts in aqueous NaBH₄ solutions is a well-known process [3,41–45]. However, the investigation of the active phase formed from cobalt oxides under the action of hydride solutions has been started only recently. The composition and the rate of formation of the amorphous cobalt-containing active phase and their effect on hydrogen generation rate are not well studied. In addition to this, the efficiency of cobalt oxides in NH₃BH₃ hydrolysis has been not

^{*} Corresponding author. Tel.: +7 3832 3307458; fax: +7 3832 3307336. *E-mail address:* komova@catalysis.ru (O.V. Komova).

⁰⁹²⁶⁻⁸⁶⁰X/\$ - see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.apcata.2010.12.028

Table 1
Initial composition of hydride solutions used in catalytic hydrolysis reaction.

No.	Initial composition of hydride	The molar ratio of
	solutions ($V = 10 \text{ ml}$)	$NaBH_4:NH_3BH_3(\omega)$
1	1.2 mmol NaBH ₄	-
2	1.2 mmol NH ₃ BH ₃	_
3	1.2 mmol NH ₃ BH ₃ + 0.072 mmol	0.06
	NaBH4	
4	1.2 mmol NH ₃ BH ₃ + 0.144 mmol	0.12
	NaBH ₄	
5	1.2 mmol NH ₃ BH ₃ + 0.288 mmol	0.24
	NaBH ₄	
6	1.2 mmol NH ₃ BH ₃ + 0.48 mmol	0.4
	NaBH ₄	

discussed in the literature. This data is important for understanding the catalytic action mechanism of Co-based catalysts formed during hydrolysis.

In this paper Co_3O_4 as catalyst of NaBH₄ and NH₃BH₃ hydrolysis has been investigated. The catalytic activity of the active phase formed *in situ* from Co_3O_4 has been compared with that of the phase formed from $CoCl_2$ which is traditionally used in hydrolysis of hydrides under study. The state of cobalt oxide during its contact with the hydride reaction medium has been studied by several physical methods (FTIR, magnetic susceptibility measurements, XRD, TEM).

2. Experimental

2.1. Catalysts used

Commercially available Co_3O_4 powder (GOST 4467-79) was used as catalysts for NaBH₄ and NH₃BH₃ hydrolysis. Co_3O_4 has specific surface area of $16 \text{ m}^2/\text{g}$. For a comparative study, $CoCl_2 \cdot 6H_2O$ (GOST 4525-77) was also used to prepare cobalt boride active phase *in situ* under the action of NaBH₄ reaction medium as described later.

2.2. Hydrogen generation experiments

Hydrogen generation experiments were carried out at $40 \,^{\circ}$ C (or $20 \,^{\circ}$ C) in a glass temperature-controlled internal mixing reactor equipped with a magnetic stirrer at an 800 rpm stirring rate. A freshly prepared aqueous solution (*V*=10 ml) of NaBH₄ (Acros Organics, 98%) or NH₃BH₃ (JSC "AVIABOR", 99%) or of a mixture of them was placed into the reactor. The content of hydrides in 10 ml of distilled water is shown in Table 1. The catalyst (0.0117 g) was added and the volume of generated hydrogen was measured with a gas burette.

Several catalytic samples were taken during NaBH₄ hydrolysis and analyzed by FTIR, XRD, TEM, and magnetic susceptibility studies. In this case, the hydrolysis process was performed at 20 °C. The initial amount of Co₃O₄ was 0.0117 g. The initial reaction medium contained the standard amount of aqueous NaBH₄ (1.2 mmol in 10 ml). The process was stopped at different stages of NaBH₄ hydrolysis: at the beginning of the reaction (at the end of the induction period) at a 5% (*Sample B*), 50% (*Sample C*), and 100% (*Sample D*) of NaBH₄ conversion. The solid catalysts were taken from the reaction medium by a magnet, rapidly washed with acetone, and dried at 80 °C for 3 h under vacuum and then studied. The list of catalyst samples taken for analysis is presented in Table 2. Fig. 1 shows the reaction times and the generated volumes of H₂ at which the catalytic samples were taken from the reaction medium.

A comparative study of the activity and stability of Co_3O_4 - and $CoCl_2$ -based catalysts formed *in situ* under the action of NaBH₄ was carried out for NaBH₄ and NH₃BH₃ hydrolysis. For this study a cat-

Table 2

Catalytic samples taken	during NaBH ₄	hydrolysis at 20 $^\circ\text{C}.$

Catalytic sample	Description ^a
Α	Co ₃ O ₄ before reaction
В	Solid sample was taken from the reactor at the end of
	the induction period when the NaBH ₄ conversion
	achieved 5%
С	Solid sample was taken from the reactor in the middle
	of reaction when achieved NaBH ₄ conversion was 50%
D	Solid sample was taken from the reactor at the end of
	reaction when NaBH ₄ conversion achieved 100%

^a See Fig. 1.

alyst suspension was preliminary obtained in the catalytic reactor during NaBH₄ hydrolysis of the standard amount of aqueous NaBH₄ (1.2 mmol in 10 ml) at 40 °C. The started weight of Co_3O_4 (or $CoCl_2$) was 0.0117 g. After the complete hydrolysis of NaBH₄, the catalyst sample was separated from the reaction mixture by a magnet, washed with distilled water in air and then the hydride (1.2 mmol, NaBH₄ or NH₃BH₃) dissolved in 10 ml of distilled water was added. Before the addition of the next portion of hydride solution the procedure of catalyst water treatment was repeated. Catalyst samples prepared from Co_3O_4 and $CoCl_2$ were denoted as *Catalyst 1* and *Catalyst 2*, respectively.

2.3. Catalyst characterization

The bulk concentration of Co and B in the samples of catalysts was determined using inductively coupled plasma atomic emission spectrometry on an Optima 4300 DV instrument.

The room temperature XRD studies were carried out under vacuum (5×10^{-6} bar) on a Bruker D8 diffractometer (Germany) with an Anton Paar high temperature vacuum sample chamber (Austria). The diffractometer was equipped with a Gebel mirror (Bruker, Germany) that formed a parallel X-ray beam. The CuK α radiation was used. The crystallite size of Co₃O₄ spinel was estimated by the broadening of XRD peak (3 1 1) by using Scherrer's equation.

High-resolution transmission electron microscopy (HRTEM) studies were carried out using a JEM-2010 instrument with a lattice resolution of 1.4 Å and an accelerating voltage of 200 kV. The samples were fixed on "holey" carbon films supported by copper grids and investigated with an electron microscope.

The FTIR spectra of the samples were recorded in air at room temperature on a Bomen MB-102 Fourier spectrometer. For the analysis, the samples were pressed with CsI.

Fig. 1. Effect of reaction temperature on the volume of H_2 generated from NaBH₄ solution (1.2 mmol in 10 ml) over Co_3O_4 , where *Sample A* was Co_3O_4 before reaction, *Samples B, C*, and *D* were taken from NaBH₄ hydrolysis at the conversions of 5%, 50%, and 100%, respectively (Table 2). The catalyst weight was 0.0117 g.

Download English Version:

https://daneshyari.com/en/article/41467

Download Persian Version:

https://daneshyari.com/article/41467

Daneshyari.com