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Delaunay refinement is a technique for generating unstructured meshes of triangles for use
in interpolation, the finite element method, and the finite volume method. In theory and
practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles,
edge lengths, the number of triangles, and the grading of triangles from small to large sizes.
This article presents an intuitive framework for analyzing Delaunay refinement algorithms
that unifies the pioneering mesh generation algorithms of L. Paul Chew and Jim Ruppert,
improves the algorithms in several minor ways, and most importantly, helps to solve the
difficult problem of meshing nonmanifold domains with small angles.
Although small angles inherent in the input geometry cannot be removed, one would like
to triangulate a domain without creating any new small angles. Unfortunately, this problem
is not always soluble. A compromise is necessary. A Delaunay refinement algorithm is
presented that can create a mesh in which most angles are 30◦ or greater and no angle
is smaller than arcsin[(√3/2) sin(φ/2)] ∼ (

√
3/4)φ, where φ � 60◦ is the smallest angle

separating two segments of the input domain. New angles smaller than 30◦ appear only
near input angles smaller than 60◦. In practice, the algorithm’s performance is better than
these bounds suggest.
Another new result is that Ruppert’s analysis technique can be used to reanalyze one of
Chew’s algorithms. Chew proved that his algorithm produces no angle smaller than 30◦
(barring small input angles), but without any guarantees on grading or number of triangles.
He conjectures that his algorithm offers such guarantees. His conjecture is conditionally
confirmed here: if the angle bound is relaxed to less than 26.5◦, Chew’s algorithm produces
meshes (of domains without small input angles) that are nicely graded and size-optimal.

© 2014 Published by Elsevier B.V.

1. Introduction

Delaunay refinement is a technique for generating triangular meshes suitable for use in interpolation, the finite element
method, and the finite volume method. The problem is to find a triangulation that covers a specified domain, and contains
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Fig. 1. A PSLG and a mesh generated by Ruppert’s Delaunay refinement algorithm.

only triangles whose shapes and sizes satisfy constraints: the angles should not be too small or too large, and the triangles
should not be much smaller than necessary, nor larger than desired. Delaunay refinement algorithms offer mathematical
guarantees that such constraints can be met. They also perform excellently in practice.

This article has three purposes. First, it offers a theoretical framework for Delaunay refinement algorithms that makes
it easy to understand why different variations of Delaunay refinement are successful. This framework is used to clarify
the performance of an algorithm by Ruppert, to reanalyze an algorithm by Chew, and to generate several extensions of
Delaunay refinement. Second, this article exploits the framework to help find a practical solution to the difficult problem of
meshing domains with small angles that Delaunay refinement algorithms proposed to date cannot mesh. Third, it presents
almost everything algorithmic a programmer needs to know to implement a state-of-the-art triangular mesh generator
for straight-line domains. (Curved boundaries and surfaces, however, are not treated here. Thorough treatments of data
structures and Delaunay triangulation algorithms are available elsewhere [8,17,29].)

A full description of the mesh generation problem begins with the domain to be meshed. Most theoretical treatments of
meshing take as their input a planar straight line graph (PSLG). A PSLG is a set of vertices and segments, like that illustrated
in Fig. 1(a). A segment is an edge that must be represented by a sequence of contiguous edges in the final mesh, as Fig. 1(b)
shows. By definition, a PSLG is required to contain both endpoints of every segment it contains, and a segment may intersect
vertices and other segments only at its endpoints. (A set of segments that does not satisfy this condition can be converted
into a set of segments that does. Run a segment intersection algorithm [3,12,28], then divide each segment into smaller
segments at the points where it intersects other segments or vertices.)

The process of mesh generation necessarily divides each segment into smaller edges called subsegments. The bold edges
in Fig. 1(b) are subsegments; other edges are not. The triangulation domain is the region that a user wishes to triangulate.
For mesh generation, a PSLG must be segment-bounded, meaning that segments of the PSLG entirely cover the boundary
separating the triangulation domain from its complement, the exterior domain. A triangulation domain need not be convex,
and it may enclose untriangulated holes, but the holes must also be bounded by segments. A segment must lie anywhere a
triangulated region of the plane meets an untriangulated region.

A mesh generator produces a triangulation that attempts to satisfy three goals. First, the union of the triangles is the
triangulation domain, and the triangulation respects the segments—each segment is a union of triangulation edges.

Second, the triangles should be relatively “round” in shape, because triangles with large or small angles can degrade the
quality of the numerical solution to a finite element problem. In interpolation, triangles with large angles can cause large
errors in the gradients of the interpolated surface. In the finite element method, large angles can cause a large discretization
error [1]; the solution may be less accurate than the method would normally promise. Small angles can cause the coupled
systems of algebraic equations that the finite element method yields to be ill-conditioned [7].

A lower bound on the smallest angle of a triangulation implicitly bounds the largest angle. If no angle is smaller than θ ,
no angle is larger than 180◦ − 2θ . Hence, many mesh generation algorithms, including the Delaunay refinement algorithms
studied here, take the approach of attempting to bound the smallest angle.

A third goal is to offer as much control as possible over the sizes of triangles in the mesh. Some meshing algorithms,
including algorithms by Baker, Grosse, and Rafferty [2] and Chew [9], produce only uniform meshes, in which all triangles
have roughly the same size. Other algorithms offer rapid grading—the ability to grade from small to large triangles over a
relatively short distance. Small, densely packed triangles offer more accuracy than larger, sparsely packed triangles; but the
computation time required to solve a problem is proportional to the number of triangles. Hence, choosing a triangle size
entails trading off speed and accuracy. In the finite element method, the triangle size required to attain a given amount
of accuracy depends upon the behavior of the physical phenomena being modeled, and may vary throughout the problem
domain.

Given a coarse mesh—one with relatively few triangles—it is not difficult to refine it to produce another mesh having a
larger number of smaller triangles [18]. The reverse process is not so easy [22]. Hence, mesh generation algorithms often
set themselves the goal of being able, in principle, to generate a mesh with as few triangles as possible. They typically offer
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