

Contents lists available at ScienceDirect

# Computational Geometry: Theory and Applications

www.elsevier.com/locate/comgeo



## Reprint of: Grid representations and the chromatic number \*,\*\*



#### Martin Balko

Department of Applied Mathematics, Charles University, Faculty of Mathematics and Physics, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

#### ARTICLE INFO

Article history:
Available online 21 November 2013
Communicated by B. Liotta

Keywords:
Graph drawings
Grid
Graph coloring
Chromatic number

#### ABSTRACT

A grid drawing of a graph maps vertices to the grid  $\mathbb{Z}^d$  and edges to line segments that avoid grid points representing other vertices. We show that a graph G is  $q^d$ -colorable, d,  $q \geqslant 2$ , if and only if there is a grid drawing of G in  $\mathbb{Z}^d$  in which no line segment intersects more than q grid points. This strengthens the result of D. Flores Peñaloza and F.J. Zaragoza Martinez. Second, we study grid drawings with a bounded number of columns, introducing some new NP-complete problems. Finally, we show that any planar graph has a planar grid drawing where every line segment contains exactly two grid points. This result proves conjectures asked by D. Flores Peñaloza and F.J. Zaragoza Martinez.

© 2013 Elsevier B.V. All rights reserved.

#### 1. Introduction

Let G = (V, E) be a simple, undirected and finite graph. A k-coloring of G is a function  $f: V \to C$  for some set C of K colors such that  $f(u) \neq f(v)$  for every edge  $uv \in E$ . If such a K-coloring of K exists, then K is K-colorable. The chromatic number K (K) of K is the least K such that K is K-colorable. A complete graph on K exists, then K is denoted as K is K-colorable.

Let  $\overline{xy}$  denote the closed line segment joining two grid points  $x, y \in \mathbb{Z}^d$ . The line segment  $\overline{xy}$  is *primitive* if  $\overline{xy} \cap \mathbb{Z}^d = \{x, y\}$ .

**Definition 1.** A <u>grid drawing</u>  $\phi(G)$  of G in  $\mathbb{Z}^d$  is an injective mapping  $\phi: V \to \mathbb{Z}^d$  such that, for every edge  $uv \in E$  and vertex  $w \in V$ ,  $\phi(w) \in \overline{\phi(u)\phi(v)}$  implies that w = u or w = v.

That is, a grid drawing represents vertices of G by distinct grid points in  $\mathbb{Z}^d$ , and each edge by a line segment between its endpoints such that the only vertices an edge intersects are its own endpoints.

#### 1.1. Robustness

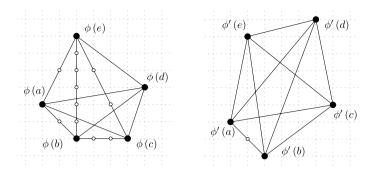
In this paper we study the grid drawings from three points of view: robustness, compactness and planarity. The *robustness of a grid drawing* is understood as the maximum number of grid points a line segment of such a drawing intersects. For a given graph G we would like to find a grid drawing of G with the lowest robustness. In Section 2 we show a connection between such grid drawings and the chromatic number  $\chi(G)$ .

E-mail address: martin.balko@seznam.cz.

DOI of original article: http://dx.doi.org/10.1016/j.comgeo.2013.05.003.

<sup>\*</sup> A four-page abstract of an earlier version of this paper appeared in the proceedings of the 28th European Workshop on Computational Geometry EuroCG '12 (Balko, 2012) [2]. The booklet of abstracts is available here: http://www.diei.unipg.it/eurocg2012/booklet.pdf.

<sup>&</sup>lt;sup>††</sup> The research was supported by the grant GACR GIG/11/E023 GraDR in the framework of ESF EUROGIGA program and by the Grant Agency of the Charles University, GAUK project number 1262213.



**Fig. 1.** Some grid drawings of the graph  $K_5$  with the set of vertices  $\{a, b, c, d, e\}$ .

A graph G is said to be (grid) locatable in  $\mathbb{Z}^d$  if there exists a grid drawing of G in  $\mathbb{Z}^d$  where every edge is represented by a primitive line segment (such a drawing is also called *primitive*). Finding a primitive grid drawing of G is called *locating* the graph G. D. Flores Peňaloza and F.J. Zaragoza Martinez [7] showed the following characterization:

**Theorem 1.** (See [7].) A graph G is locatable in  $\mathbb{Z}^2$  if and only if G is 4-colorable.

Therefore not all graphs are locatable in  $\mathbb{Z}^2$  and every (two-dimensional) grid drawing of any k-colorable graph, where k > 4, contains a line segment which intersects at least three grid points. This leads us to a generalization of the concept of locatability. Let the number  $gp(\phi(G))$  denote the maximum number of grid points any line segment of the grid drawing  $\phi(G)$  intersects.

**Definition 2.** A graph G is (grid) q-locatable in  $\mathbb{Z}^d$ , for some integer  $q \ge 2$ , if there exists a grid drawing  $\phi(G)$  in  $\mathbb{Z}^d$  such that  $gp(\phi(G)) \le q$ .

The *grid robustness of a graph G* is the minimum of  $gp(\phi(G))$  among all grid drawings  $\phi(G)$ . For example, the graph  $K_5$  has chromatic number five, thus it is not (two-)locatable in  $\mathbb{Z}^2$ . However the second grid drawing in Fig. 1 shows that  $K_5$  is three-locatable in  $\mathbb{Z}^2$  (the third grid point on a line segment is denoted by an empty circle). The main result of Section 2 is a stronger version of Theorem 1.

**Theorem 2.** For integers d,  $q \ge 2$ , a graph G is  $q^d$ -colorable if and only if G is q-locatable in  $\mathbb{Z}^d$ .

The proof is constructive and for a given coloring of G with at most  $q^d$  colors we get a linear time algorithm which gives us a grid drawing  $\phi(G)$  of G in  $\mathbb{Z}^d$  where every line segment contains at most q grid points. Conversely, we also show that if we have such a grid drawing of G, then it is quite trivial to get a coloring of G with at most  $q^d$  colors.

**Corollary 1.** For an integer  $d \ge 2$ , a graph is  $2^d$ -colorable if and only if it is locatable in  $\mathbb{Z}^d$ .

#### 1.2. Compactness

The compactness of a grid drawing signifies bounded space of the drawing in some fashion. Our aim in Section 3 is to draw (or locate) the graph in the smallest number of columns. For an integer  $d \ge 2$ , a *column* in the grid  $\mathbb{Z}^d$  with the *rank*  $(x_1,\ldots,x_{d-1}) \in \mathbb{Z}^{d-1}$  is the set  $\{(x_1,\ldots,x_{d-1},x) \mid x \in \mathbb{Z}\}$ . It turns out that this problem is closely related to a special form of a defective coloring in which some colors induce independent sets and some disjoint unions of paths (linear forests). We call these colorings *mixed*.

**Definition 3.** If there is a mixed coloring of a graph G such that a colors induce independent sets (so-called *normal colors*) and b colors induce linear forests ( $path\ colors$ ), then we say that G is (a,b)-colorable.

In the case of primitive grid drawings we obtain the following characterization:

**Theorem 3.** For a graph G, integers  $d \ge 2$  and l,  $2^{d-1} < l \le 2^d$ , the following statements are equivalent:

- 1. G can be located on l columns in  $\mathbb{Z}^d$ ,
- 2. *G* is  $(2l 2^d, 2^d l)$ -colorable.

### Download English Version:

### https://daneshyari.com/en/article/414683

Download Persian Version:

https://daneshyari.com/article/414683

<u>Daneshyari.com</u>