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subgraph of G induced by {u, v, w} is not connected is at most n — 3, then G contains
a non-self intersecting spanning tree.
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1. Introduction

Throughout this article P denotes a set of n > 3 points in general position in the Euclidean plane. A geometric graph
with vertex set P is a graph G drawn in such a way that each edge is a straight line segment with both ends in P. A plane
spanning tree of G is a non-self intersecting subtree of G that contains every vertex of G. Plane spanning trees with or
without specific conditions have been studied by various authors.

A well known result of Karolyi et al. [3] asserts that if the edges of a finite complete geometric graph GK; are coloured
by two colours, then there exists a plane spanning tree of GK, all of whose edges are of the same colour. Keller et al. [4]
characterized those plane spanning trees T of GK, such that the complement graph T® contains no plane spanning trees.

A plane spanning tree T is a geometric independency tree if for each pair {u, v} of leaves of T, there is an edge xy of
T such that the segments uv and xy cross each other. Kaneko et al. [2] proved that every complete geometric graph with
n > 5 vertices contains a geometric independency tree with at least % leaves.

Let k be an integer with 2 <k <5 and G be a geometric graph with n > k vertices such that all geometric subgraphs
of G induced by k vertices have a plane spanning tree. Rivera-Campo [6] proved that G has a plane spanning tree.

Three points u, v and w in P form an empty triangle if no point of P lies in the interior of the triangle Auvw. For any
geometric graph G with vertex set P we say that an empty triangle Auvw of P is disconnected in G if the subgraph of G
induced by {u, v, w} is not connected.

Let s(G) denote the number of disconnected empty triangles of G. Our result is the following:

Theorem 1. If G is a geometric graph with n > 3 vertices such that s(G) <n — 3, then G has a plane spanning tree.
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Fig.1. x,y,ze LF NI n---NL, x=v; and L; crosses {x, y,z}.

For each n >3, let uy, uy, ..., u, be the vertices of a regular n-gon and denote by T, and T the plane path uq,u, ..., u,
and its complement, respectively. The geometric graph TS contains no plane spanning tree and is such that s(T$) =n — 2.
This shows that the condition in Theorem 1 is tight.

2. Proof of Theorem 1

For every oriented straight line L we denote by L~ the set of points in P which are on or to the left of L and by L* the
points which are on or to the right of L.

A k-set of P is a subset X of P with k elements that can be obtained by intersecting P with an open half plane. The
main tool in the proof of Theorem 1 is the following procedure of Erdos et al. [5,1], used to generate all k-sets of P: Let
L =1Ly be an oriented line passing through precisely one point vi of P with |L]| =k + 1. Rotate L clockwise around the
axis v1 by an angle 6 until a point v, in P is reached. Now rotate L in the same direction but around v, until a point v3
in P is reached, and continue rotating L in a similar fashion obtaining a set of oriented lines C(L) and a sequence of points
V1, Va,..., Vs, NOt necessarily distinct, where vs = vy when the angle of rotation 6 reaches 2.

Fori=1,2,...,s—1, let L(vj, viy+1) be the line in C(L) that passes through points v; and v;;1 and fori=2,3,...,s—1,
let L; be any line in C(L) between L(v;_1, v;) and L(vj, Vit+1).

It is well known that for each line L; either L;jr] = L;r and L7 (L7 \ {vih U {vjsa), or Lﬁ_l = (L;r \ VD U (v}

j+1 =
and Ly, =Lj. In both cases |L ILj|=k+1 and LT .| = |L}L| =n—k. It is also easy to see that if vjiq € L;r,

j+1 j+1
then L™(vj,vj41) = L; U{vj1} and Lt (vj,vjp) = L}“. and if vji1 €Ly, then L™ (vj,vjy1) =L; and LY(vj,vjs) =
LNV D UV

The following lemma will used in the proof of Theorem 1.

Lemma 2. Let L;, Lj € C(L) withi < j.Ifx, y and z are points of P lying in L,.Jr N L].’, then there are integers k and [ withi <k <l < j
such that vy € {x, y,2},x,y,z € L,:“ Al Lj_ and such that L; crosses the triangle Axyz.

Proof. Consider the lines L;, Liy1,...,Lj. The result follows from the fact that at each step t, at most one of the points
X, ¥, z switches from Lt+ to L_ ;. SeeFig. 1. O

Let G be a geometric graph with n > 3 vertices such that s(G) <n — 3 and let P denote the vertex set of G. If n =3
or n =4, it is not difficult to verify by inspection that G has a plane spanning tree. Let us proceed with the proof of
Theorem 1 by induction and assume n > 5 and that the result is valid for each geometric subgraph of G with k vertices,
where 3 <k<n—1.

Let v¢ be a point in P and L1 be an oriented line through v such that [L] | = [%] and |LT| = L%J. Let C(L) be the
set of oriented lines obtained from L = Lq as above.

For every i > 1, define G; and Gf as the geometric subgraphs of G induced by L;” and Li+ respectively, and G~ (v, Vi4+1)
and G'(v;, viy1) as the geometric subgraphs of G induced by L™ (v, viz1) and LT (v;, viy1), respectively.

We show there is a line in C(L) for which induction applies to the corresponding graphs G~ and G, giving plane
spanning trees T~ of G~ and Tt of G™. As T~ and T™ lie in opposite sides of L, their union contains a plane spanning
tree of G. We analyse several cases.

Case 1. s(G}) < |Ly| —3 and s(G)) < |Lf| 3.
By induction there exist plane spanning trees T; of G; and T1Jr of GT. Since T, and T]+ lie in opposite sides of L1 and
contain exactly one point in common, the graph T; U Tfr is a plane spanning tree of G.

Case2.s(Gy) >|L7|—2 and s(G}) > |LT| —2.
Clearly s(G) +s(G) > (ILy 1 —=2) + (IL| =2) =n =3 > s(G) > s(G]) + s(G}). This implies s(G;) = |L]| — 2, s(G}) =
|LT| — 2 and that L1 does not cross any disconnected empty triangle of G.
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