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Let P be a set of n � 3 points in general position in the plane and let G be a geometric
graph with vertex set P . If the number of empty triangles �uv w in P for which the
subgraph of G induced by {u, v, w} is not connected is at most n − 3, then G contains
a non-self intersecting spanning tree.
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1. Introduction

Throughout this article P denotes a set of n � 3 points in general position in the Euclidean plane. A geometric graph
with vertex set P is a graph G drawn in such a way that each edge is a straight line segment with both ends in P . A plane
spanning tree of G is a non-self intersecting subtree of G that contains every vertex of G . Plane spanning trees with or
without specific conditions have been studied by various authors.

A well known result of Károlyi et al. [3] asserts that if the edges of a finite complete geometric graph G Kn are coloured
by two colours, then there exists a plane spanning tree of G Kn all of whose edges are of the same colour. Keller et al. [4]
characterized those plane spanning trees T of G Kn such that the complement graph T c contains no plane spanning trees.

A plane spanning tree T is a geometric independency tree if for each pair {u, v} of leaves of T , there is an edge xy of
T such that the segments uv and xy cross each other. Kaneko et al. [2] proved that every complete geometric graph with
n � 5 vertices contains a geometric independency tree with at least n

6 leaves.
Let k be an integer with 2 � k � 5 and G be a geometric graph with n � k vertices such that all geometric subgraphs

of G induced by k vertices have a plane spanning tree. Rivera-Campo [6] proved that G has a plane spanning tree.
Three points u, v and w in P form an empty triangle if no point of P lies in the interior of the triangle �uv w . For any

geometric graph G with vertex set P we say that an empty triangle �uv w of P is disconnected in G if the subgraph of G
induced by {u, v, w} is not connected.

Let s(G) denote the number of disconnected empty triangles of G . Our result is the following:

Theorem 1. If G is a geometric graph with n � 3 vertices such that s(G) � n − 3, then G has a plane spanning tree.
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Fig. 1. x, y, z ∈ L+
i ∩ L+

i+1 ∩ · · · ∩ L+
k , x = vk and Ll crosses {x, y, z}.

For each n � 3, let u1, u2, . . . , un be the vertices of a regular n-gon and denote by Tn and T c
n the plane path u1, u2, . . . , un

and its complement, respectively. The geometric graph T c
n contains no plane spanning tree and is such that s(T c

n) = n − 2.
This shows that the condition in Theorem 1 is tight.

2. Proof of Theorem 1

For every oriented straight line L we denote by L− the set of points in P which are on or to the left of L and by L+ the
points which are on or to the right of L.

A k-set of P is a subset X of P with k elements that can be obtained by intersecting P with an open half plane. The
main tool in the proof of Theorem 1 is the following procedure of Erdős et al. [5,1], used to generate all k-sets of P : Let
L = L1 be an oriented line passing through precisely one point v1 of P with |L−

1 | = k + 1. Rotate L clockwise around the
axis v1 by an angle θ until a point v2 in P is reached. Now rotate L in the same direction but around v2 until a point v3
in P is reached, and continue rotating L in a similar fashion obtaining a set of oriented lines C(L) and a sequence of points
v1, v2, . . . , vs , not necessarily distinct, where vs = v1 when the angle of rotation θ reaches 2π .

For i = 1,2, . . . , s − 1, let L(vi, vi+1) be the line in C(L) that passes through points vi and vi+1 and for i = 2,3, . . . , s − 1,
let Li be any line in C(L) between L(vi−1, vi) and L(vi, vi+1).

It is well known that for each line L j either L+
j+1 = L+

j and L−
j+1 = (L−

j \ {v j}) ∪ {v j+1}, or L+
j+1 = (L+

j \ {v j}) ∪ {v j+1}
and L−

j+1 = L−
j . In both cases |L−

j+1| = |L−
j | = k + 1 and |L+

j+1| = |L+
j | = n − k. It is also easy to see that if v j+1 ∈ L+

j ,

then L−(v j, v j+1) = L−
j ∪ {v j+1} and L+(v j, v j+1) = L+

j , and if v j+1 ∈ L−
j , then L−(v j, v j+1) = L−

j and L+(v j, v j+1) =
(L+

j \ {v j}) ∪ {v j+1}.
The following lemma will used in the proof of Theorem 1.

Lemma 2. Let Li, L j ∈ C(L) with i < j. If x, y and z are points of P lying in L+
i ∩ L−

j , then there are integers k and l with i � k < l < j

such that vk ∈ {x, y, z}, x, y, z ∈ L+
k ∩ L−

j and such that Ll crosses the triangle �xyz.

Proof. Consider the lines Li, Li+1, . . . , L j . The result follows from the fact that at each step t , at most one of the points
x, y, z switches from L+

t to L−
t+1. See Fig. 1. �

Let G be a geometric graph with n � 3 vertices such that s(G) � n − 3 and let P denote the vertex set of G . If n = 3
or n = 4, it is not difficult to verify by inspection that G has a plane spanning tree. Let us proceed with the proof of
Theorem 1 by induction and assume n � 5 and that the result is valid for each geometric subgraph of G with k vertices,
where 3 � k � n − 1.

Let v1 be a point in P and L1 be an oriented line through v1 such that |L−
1 | = �n+1

2 � and |L+
1 | = �n+1

2 	. Let C(L) be the
set of oriented lines obtained from L = L1 as above.

For every i � 1, define G−
i and G+

i as the geometric subgraphs of G induced by L−
i and L+

i respectively, and G−(vi, vi+1)

and G+(vi, vi+1) as the geometric subgraphs of G induced by L−(vi, vi+1) and L+(vi, vi+1), respectively.
We show there is a line in C(L) for which induction applies to the corresponding graphs G− and G+ , giving plane

spanning trees T − of G− and T + of G+ . As T − and T + lie in opposite sides of L, their union contains a plane spanning
tree of G . We analyse several cases.

Case 1. s(G−
1 )� |L−

1 | − 3 and s(G+
1 ) � |L+

1 | − 3.
By induction there exist plane spanning trees T −

1 of G−
1 and T +

1 of G+
1 . Since T −

1 and T +
1 lie in opposite sides of L1 and

contain exactly one point in common, the graph T −
1 ∪ T +

1 is a plane spanning tree of G .

Case 2. s(G−
1 )� |L−

1 | − 2 and s(G+
1 ) � |L+

1 | − 2.
Clearly s(G−

1 ) + s(G+
1 ) � (|L−

1 | − 2) + (|L+
1 | − 2) = n − 3 � s(G) � s(G−

1 ) + s(G+
1 ). This implies s(G−

1 ) = |L−
1 | − 2, s(G+

1 ) =
|L+

1 | − 2 and that L1 does not cross any disconnected empty triangle of G .
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