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We generalize the Euclidean 1-center approximation algorithm of Bădoiu and Clarkson
(2003) [6] to arbitrary Riemannian geometries, and study the corresponding convergence
rate. We then show how to instantiate this generic algorithm to two particular settings:
(1) the hyperbolic geometry, and (2) the Riemannian manifold of symmetric positive
definite matrices.
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1. Introduction and prior work

Finding the unique smallest enclosing ball (SEB) of a finite Euclidean point set P = {p1, . . . , pn} is a fundamental
problem that was first posed by Sylvester [19]. This problem has been thoroughly investigated in the computational ge-
ometry community by Welzl [21] and Nielsen and Nock [13], where it is also known as the minimum enclosing ball
(MEB), the 1-center problem, or the minimax optimization problem in operations research. In practice, since computing
the SEB exactly is intractable in high dimensions, efficient approximation algorithms have been proposed. An algorith-
mic breakthrough was achieved by Bădoiu and Clarkson [7] that proved the existence of a core-set C ⊆ P of optimal
size |C | = � 1

ε � so that r(C) � (1 + ε)r(P ) (for any arbitrary ε > 0), where r(S) denotes the radius of the SEB of S .
Let c(S) denote the ball center, i.e. the minimax center. Since the size of the core-set depends only on the approx-
imation precision ε and is independent of the dimension, core-sets have become widely popular in high-dimensional
applications such as supervised classification in machine learning (see for example, the core vector machines of Tsang
et al. [20]). In the work of Bădoiu and Clarkson [6], a fast and simple approximation algorithm is designed as algorithm
BC-ALG.

It can be proved that a (1 + ε)-approximation of the SEB is obtained after � 1
ε2 � iterations, thereby showing the existence

of a core-set C = { f1, f2, . . .} of a size at most � 1
ε2 �: r(C) � (1 + ε)r(P ). This simple algorithm runs in time O ( dn

ε2 ), and has
been generalized to Bregman divergences by Nock and Nielsen [15] which include the (squared) Euclidean distance, and are
the canonical distances of dually flat spaces, including the particular case of self-dual Euclidean geometry. (Note that if we
start from the optimal center c1 = c(S), the first iteration yields a center c2 away from c(S) but it will converge in the long
run to c(S).) Bădoiu and Clarkson [7] proved the existence of optimal ε-core-set of size � 1

ε �. Since finding tight core-sets
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BC-ALG:

• Initialize the center c1 ∈ P , and
• Iteratively update the current center using the rule

ci+1 ← ci + f i − ci

i + 1
,

where f i denotes the farthest point of P to ci .

requires as a black box primitive the computation of the exact smallest enclosing balls of small-size point sets, we rather
consider the Riemmanian generalization of the BC-ALG, although that even in the Euclidean case it does not deliver optimal
size core-sets.

Many data-sets arising in medical imaging (see [17]) or in computer vision (refer to [16]) cannot be considered as
emanating from vectorial spaces but rather as lying on curved manifolds. For example, the space of rotations or the space
of invertible matrices are not flat, as the arithmetic average of two elements does not necessarily lie inside the space.

In this work, we extend the Euclidean BC-ALG algorithm to Riemannian geometry. In the remainder, we assume the
reader familiar with basic notions of Riemannian geometry (see [4] for an introductory textbook) in order not to burden the
paper with technical Riemannian definitions. However in Appendix A, we recall some specific notions which play a key role
in the paper, such as geodesics, sectional curvature, injectivity radius, Alexandrov and Toponogov theorems, and cosine laws
for triangles. Furthermore, we consider probability measures instead of finite point sets1 so as to study the most general
setting.

Let M be a complete Riemannian manifold and ν a probability measure on M . Denote by ρ(x, y) the Riemannian distance
from x to y on M that satisfies the metric axioms. Assume the measure support supp(ν) is included in a geodesic ball
B(o, R).

Recall that if p ∈ [1,∞) and f : M →R is a measurable function then

‖ f ‖L p(ν) =
(∫

M

∣∣ f (y)
∣∣p

ν(dy)

)1/p

and

‖ f ‖L∞(ν) = inf
{

a > 0, ν
({

y ∈ M,
∣∣ f (y)

∣∣ > a
}) = 0

}
.

Let

Rα,p =
{

1
2 min{inj(M), π

2α } if 1 � p < 2,

1
2 min{inj(M), π

α } if 2 � p � ∞ (1)

where inj(M) is the injectivity radius (see Appendix A) and α > 0 is such that α2 is an upper bound for the sectional
curvatures in M (in fact replacing M by B(o,2R) is sufficient, so that we can always assume that α > 0). For p ∈ [1,∞],
under the assumption that

R < Rα,p (2)

it has been proved by Afsari [2] that there exists a unique point cp which minimizes the following cost function

H p : M → [0,∞]
x �→ ∥∥ρ(x, ·)∥∥L p(ν)

(3)

with cp ∈ B(o, R) (in fact, lying inside the closure of the convex hull of the support of ν).
For a discrete uniform measure viewed as a “point cloud” in a Euclidean space and p ∈ [1,∞), we have H p(x) =

( 1
n

∑n
i=1 ‖pi − x‖p

p)1/p , with ‖ · ‖p denoting the L p-norm, and H∞(x) is the distance from x to its farthest point in the
cloud.

In the general situation the point cp that realizes the minimum represents a notion of centrality of the measure (e.g.,
median for p = 1, mean for p = 2, and minimax center for p = ∞). This center is a global minimizer (not only in B(o, R)),
and this explains why a bound for the sectional curvature is required on the whole manifold M (in fact B(o,2R) is sufficient,
see [2]).

1 We view finite point sets as discrete uniform probability measures.
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