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In this paper, we consider the problem of computing a minimum bending energy path (or
MinBEP) in a simple corridor. Given a simple 2D corridor C bounded by straight line seg-
ments and arcs of radius 2r, the MinBEP problem is to compute a path P inside C and
crossing two pre-specified points s and t located at each end of C so that the bending en-
ergy of P is minimized. For this problem, we first show how to lower bound the bending
energy of an optimal curve with bounded curvature, and then use this lower bound to de-
sign a (1 + ε)-approximation algorithm for this restricted version of the MinBEP problem.
Our algorithm is based on a number of interesting geometric observations and approxima-
tion techniques on smooth curves, and can be easily implemented for practical purpose. It
is the first algorithm with a guaranteed performance ratio for the MinBEP problem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the following minimum bending energy path (MinBEP) problem: Given a simple corridor C
bounded by the straight line segments and arcs of radius 2r (a precise definition of simple corridor is given later) and two
points s and t at each end of C , compute a minimum energy path P crossing s and t and traversing the corridor C . The
energy of a smooth path P is measured by its bending energy Eb .

The bending energy was suggested by Bernoulli in 1738 and studied intensively for the case of planar curves by Euler
[10]. Given a smooth parameterized planar curve s, its bending energy is defined as the integral of the squared curvature
over the length of the curve, i.e., Eb = ∫

s κ
2 ds, where κ is the curvature of the curve at point s. Let s(t) = (x(t), y(t))

be the parametrization of an arbitrary point on a smooth curve. Then the curvature [26] of the curve at s(t) is given by
κ(t) = ẋ(t) ÿ(t)− ẏ(t)ẍ(t)

(ẋ(t)2+ ẏ(t)2)3/2 , where ẋ(t) is the first derivative of x(t) and ÿ(t) is the secondary derivative of y(t). Intuitively, the

curvature of a smooth curve at point s(t) is defined as the inverse of its minimum curvature radius (i.e., the radius of the
osculating circle at s(t)).

The MinBEP problem considered in this paper is motivated by applications in interventional procedures for cardiovascular
surgery [17,24,25,27]. In such applications, an elastic wire (called guidewire) is often used to guide a catheter/stent through
the blood vessels to the narrowed (stenosed) spot to open it up. To optimize the interventional procedure (e.g., selecting the
best fitting stent and catheter), it is often desirable to compute the path of the guidewire in advance. To solve this problem,
one way is to view the blood vessel as a narrow corridor and determine the path of a stabilized guidewire by computing

✩ The research of this work was supported in part by National Science Foundation (NSF) through a CAREER award CCF-0546509, two grants IIS-0713489
and IIS-1115220.

* Corresponding author. Tel.: +1 (858) 886 6496; fax: +1 (716) 645 3464.
E-mail addresses: lxu@buffalo.edu (L. Xu), jinhui@buffalo.edu (J. Xu).

0925-7721/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comgeo.2013.09.001

http://dx.doi.org/10.1016/j.comgeo.2013.09.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:lxu@buffalo.edu
mailto:jinhui@buffalo.edu
http://dx.doi.org/10.1016/j.comgeo.2013.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2013.09.001&domain=pdf


350 L. Xu, J. Xu / Computational Geometry 47 (2014) 349–366

the minimum bending energy path inside the corridor. Thus the guidewire problem can be formulated as a MinBEP problem
in 3D. In this paper we consider the 2D case. The framework of our approach is potentially applicable to the 3D case.

Due to the wide use of elastic curves in many fields, the minimum energy path problem has been extensively studied
in the past. Most of the studies have focused on computing closed or knotted elastic curves with prescribed boundary
conditions and fixed length [12,16,20,21]. Almost all of them are based on numerical techniques (e.g., partial differential
equations). For unknotted curves, several results are known for solving the guidewire problem [17,24,25,27]. Among them,
the works in [17,27] are based on finite element methods (FEM) and thus converge rather slowly. The work in [24,25]
introduces a heuristic algorithm to approximate the path of a guidewire. It demonstrates much improved time efficiency
(e.g., seconds vs. hours or even days needed by the FEM approaches). However, due to its heuristic nature, it does not
have a provable quality guarantee and the resulting path is in general not smooth. Bending energy has also been used in
computational biology for understanding the cellular processes [15]. In addition, in shape completion which is an intriguing
problem in geometry processing with applications in CAD and graphics, a 3D Euler spiral — the curve having both its
curvature and torsion evolve linearly along the curve is proposed and proved to be existent and unique up to a rigid
transformation [14].

A problem closely related to the MinBEP problem is the curvature-bounded shortest path (also called minimum cost
path) problem. It has been frequently used for motion planning in robotics and artificial intelligence and extensively studied
[1–3,5,6,9,11,19]. In [22], it has been shown that in arbitrary polygons, the shortest path problem with constrained curva-
ture is NP-Hard. An exponential time and space algorithm for generating feasible solutions is given in [11]. More efficient
approximation algorithms were also obtained in [4,18,28].

In this paper, we consider the problem of approximating the 2D MinBEP problem. To fix the problems associated with
existing solutions (e.g., [17,24,25,27,29]), we expect that the computed path (1) has a bending energy close to optimal, (2) is
smooth at every point, and (3) can be computed efficiently. To achieve these goals, our strategy is to first solve a constrained
version of the problem. In this constrained version, we require that the to-be-computed path P have a bounded curvature
κmax depending on the shape of the corridor. Once we obtain solutions to the curvature bounded MinBEP problem, we can
then perform a binary search on the maximum curvature to find the best solution to the MinBEP problem. Thus our focus
is on the curvature bounded minimum bending energy path problem.

We note that even this constrained MinBEP problem is extremely challenging to solve optimally for several reasons.
Firstly, the curvature of an optimal curve could change continuously between 0 and κmax along the corridor, which seems
to suggest that the problem may not even belong to the class of NP. Secondly, the optimal path could appear at any place
inside the continuous free space of the corridor, making it rather difficult to predict its shape and position. Thirdly, due to
the quadratic nature of the objective function, the solution to any subpath depends on the entire unknown optimal path
and cannot be determined locally.

Thus our goal for the MinBEP problem is to obtain a good approximation solution. To deal with the aforementioned
difficulties, we have to be able to estimate the bending energy of the optimal path, predict how the energy is distributed
along the corridor, and ensure the quality of the whole computed path. For these purposes, we first use a set of recursive
shortest paths and local features of the corridor to establish a lower bound on the energy of an optimal solution as well
as the possible energy distribution. With this lower bound, we then place various types of grid points to discretize the
continuous space and guess the positions of the optimal path. With the help of a number of interesting observations on
the minimum bending energy path, sophisticated approximation techniques, and involving analysis on the quality of the
path, we show that it is possible to obtain a (1 + ε)-approximation from the discretized space. Our algorithm runs in
nearly quadratic time and can be easily implemented for practical purpose. To our best knowledge, this is the first quality
guaranteed solution to the MinBEP problem.

2. Preliminaries

Let D be a disk of radius r. A pipe is a rectangle with a fixed width of 2r and a non-fixed length e. An elbow is a sector
with a fixed radius of 2r and a non-fixed center angle of π − θ for some 0 � θ � π . A corridor is a set of alternatively
appearing pipes and elbows concatenated in a way that the radius of each elbow completely overlaps with the side of a
neighboring pipe with length 2r. A corridor C is simple if every pipe or elbow does not intersect the interior of any other
pipe or elbow, and non-simple otherwise (see Fig. 1). Clearly, there is no hole in a such defined simple corridor. Each elbow
together with its two adjacent pipes forms an elbow region ER (see Fig. 2).

Let η = {v1, v2, . . . , vn} be the centerline of C . It is easy to see that η is a simple 2D curve, where the edge between
every pair of consecutive vertices vi and vi+1 is either a straight line segment or an arc of radius r which alternatively
appears along η. Thus C can also be viewed as the Minkowski sum η ⊕ D of η and D . In geometry, the Minkowski sum
(also known as dilation) of two sets of position vectors A and B in Euclidean space is formed by adding each vector in A
to each vector in B , i.e., the set A + B = {a + b | a ∈ A, b ∈ B}. The corridor C is bounded by straight line segments and
arcs. Let Cu and Cl be the upper and lower boundary of C , separated from the two ends of C . (Assume that the segment
v1 vn is horizontally oriented.) Let {u1, u2, . . . , un} and {w1, w2, . . . , wm} be the vertices of Cu and Cl respectively. Thus the
edges between consecutive vertices in Cu and Cl are either segments or arcs. It is also easy to see that for each vertex in
the boundary of C , if it is adjacent to two segments, then it is a reflex vertex (i.e., the inner angle is larger than π ).
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