An optimal algorithm for the Euclidean bottleneck full Steiner tree problem ${ }^{\text {स }}$

Ahmad Biniaz, Anil Maheshwari, Michiel Smid*
School of Computer Science, Carleton University, Ottawa, Canada

ARTICLE INFO

Article history:

Received 1 May 2013
Accepted 2 October 2013
Available online 9 October 2013
Communicated by T.M. Chan

Keywords:

Minimum spanning tree
Steiner tree
Bottleneck length
Yao graph

Abstract

Let P and S be two disjoint sets of n and m points in the plane, respectively. We consider the problem of computing a Steiner tree whose Steiner vertices belong to S, in which each point of P is a leaf, and whose longest edge length is minimum. We present an algorithm that computes such a tree in $O((n+m) \log m)$ time, improving the previously best result by a logarithmic factor. We also prove a matching lower bound in the algebraic computation tree model.

(C) 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let P and S be two disjoint sets of n and m points in the plane, respectively. A full Steiner tree of P with respect to S is a tree \mathcal{T} with vertex set $P \cup S^{\prime}$, for some subset S^{\prime} of S, in which each point of P is a leaf. Such a tree \mathcal{T} consists of a skeleton tree, which is the part of \mathcal{T} that spans S^{\prime}, and external edges, which are the edges of \mathcal{T} that are incident on the points of P.

The bottleneck length of a full Steiner tree is defined to be the Euclidean length of a longest edge. An optimal bottleneck full Steiner tree is a full Steiner tree whose bottleneck length is minimum. In [1], Abu-Affash shows that such an optimal tree can be computed in $O\left((n+m) \log ^{2} m\right)$ time. In this paper, we improve the running time by a logarithmic factor and prove a matching lower bound. That is, we prove the following result:

Theorem 1. Let P and S be disjoint sets of n and m points in the plane, respectively. An optimal bottleneck full Steiner tree of P with respect to S can be computed in $O((n+m) \log m)$ time, which is optimal in the algebraic computation tree model.

If $n=2$, i.e., the set P only consists of two points, say p and q, then an optimal bottleneck full Steiner tree can be obtained in the following way: In $O(m \log m)$ time, compute a Euclidean minimum spanning tree of the set $P \cup S$ and return the path in this tree between p and q. The correctness of this algorithm follows from basic properties of minimum spanning trees.

In the rest of this paper, we will assume that $n \geqslant 3$. This implies that any full Steiner tree of P with respect to S contains at least one vertex from S; in other words, the skeleton tree has a non-empty vertex set S^{\prime}.

[^0]
2. The algorithm

2.1. Preprocessing

We compute a Euclidean minimum spanning tree $\operatorname{MST}(S)$ of the point set S, which can be done in $O(m \log m)$ time. Then we compute the bipartite graph $\Upsilon_{6}(P, S)$ with vertex set $P \cup S$ that is defined as follows: Consider a collection of six cones, each of angle $\pi / 3$ and having its apex at the origin, that cover the plane. For each point p of P, translate these cones such that their apices are at p. For each of these translated cones C for which $C \cap S \neq \emptyset$, the graph $\Upsilon_{6}(P, S)$ contains one edge connecting p to a nearest neighbor in $C \cap S$. (This is a variant of the well-known Yao-graph as introduced in [5].) Using an algorithm of Chang et al. [3], together with a point-location data structure, the graph $\Upsilon_{6}(P, S)$ can be constructed in $O((n+m) \log m)$ time.

The entire preprocessing algorithm takes $O((n+m) \log m)$ time.

2.2. A decision algorithm

Let λ^{*} denote the optimal bottleneck length, i.e., the bottleneck length of an optimal bottleneck full Steiner tree of P with respect to S.

In this section, we present an algorithm that decides, for any given real number $\lambda>0$, whether $\lambda^{*}<\lambda$ or $\lambda^{*} \geqslant \lambda$. This algorithm starts by removing from $\operatorname{MST}(S)$ all edges having length at least λ, resulting in a collection T_{1}, T_{2}, \ldots of trees. The algorithm then computes the set J of all indices j for which the following holds: Each point p of P is connected by an edge of $\Upsilon_{6}(P, S)$ to some point s, such that (i) s is a vertex of T_{j} and (ii) the Euclidean distance $|p s|$ is less than λ. As we will prove later, this set J has the property that it is non-empty if and only if $\lambda^{*}<\lambda$. The formal algorithm is given in Fig. 1.

Observe that, at any moment during the algorithm, the set J has size at most six. Therefore, the running time of this algorithm is $O(n+m)$.

Before we prove the correctness of the algorithm, we introduce the following notation. Let j be an arbitrary element in the output set J of algorithm $\operatorname{CompareToOptimal}(\lambda)$. It follows from the algorithm that, for each i with $1 \leqslant i \leqslant n$, there exists a point s_{i} in S such that

- s_{i} is a vertex of T_{j},
- $\left(p_{i}, s_{i}\right)$ is an edge in $\Upsilon_{6}(P, S)$, and
- $\left|p_{i} s_{i}\right|<\lambda$.

We define \mathcal{T}_{j} to be the full Steiner tree with skeleton tree T_{j} and external edges $\left(p_{i}, s_{i}\right), 1 \leqslant i \leqslant n$. Observe that, since each edge of T_{j} has length less than λ, the bottleneck length of \mathcal{T}_{j} is less than λ. Therefore, we have proved the following lemma.

```
Algorithm CompareToOptimal( \(\lambda\) );
remove from \(\operatorname{MST}(S)\) all edges having length at least \(\lambda\);
denote the resulting trees by \(T_{1}, T_{2}, \ldots\);
number the points of \(P\) arbitrarily as \(p_{1}, p_{2}, \ldots, p_{n}\);
\(J:=\emptyset\);
for each edge \(\left(p_{1}, s\right)\) in \(\Upsilon_{6}(P, S)\)
do \(j:=\) index such that \(s\) is a vertex of \(T_{j}\);
    if \(\left|p_{1} s\right|<\lambda\)
    then \(J:=J \cup\{j\}\)
    endif
endfor;
for \(i:=2\) to \(n\)
do for each \(j \in J\)
    do \(\operatorname{keep}(j):=\) false
    endfor;
    for each edge \(\left(p_{i}, s\right)\) in \(\Upsilon_{6}(P, S)\)
    do \(j:=\) index such that \(s\) is a vertex of \(T_{j}\);
        if \(j \in J\) and \(\left|p_{i} s\right|<\lambda\)
        then \(\operatorname{keep}(j):=\) true
        endif
    endfor;
    \(J:=\{j \in J: \operatorname{keep}(j)=t r u e\}\)
endfor;
return the set \(J\)
```

Fig. 1. This algorithm takes as input a real number λ and returns a set J. This set J is non-empty if and only if $\lambda^{*}<\lambda$.

https://daneshyari.com/en/article/414747

Download Persian Version:
https://daneshyari.com/article/414747

Daneshyari.com

[^0]: th Research supported by NSERC.

 * Corresponding author.

 E-mail address: michiel@scs.carleton.ca (M. Smid).

