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Let P and S be two disjoint sets of n and m points in the plane, respectively. We consider
the problem of computing a Steiner tree whose Steiner vertices belong to S , in which each
point of P is a leaf, and whose longest edge length is minimum. We present an algorithm
that computes such a tree in O ((n+m) logm) time, improving the previously best result by
a logarithmic factor. We also prove a matching lower bound in the algebraic computation
tree model.
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1. Introduction

Let P and S be two disjoint sets of n and m points in the plane, respectively. A full Steiner tree of P with respect to S is
a tree T with vertex set P ∪ S ′ , for some subset S ′ of S , in which each point of P is a leaf. Such a tree T consists of a
skeleton tree, which is the part of T that spans S ′ , and external edges, which are the edges of T that are incident on the
points of P .

The bottleneck length of a full Steiner tree is defined to be the Euclidean length of a longest edge. An optimal bottleneck
full Steiner tree is a full Steiner tree whose bottleneck length is minimum. In [1], Abu-Affash shows that such an optimal tree
can be computed in O ((n + m) log2 m) time. In this paper, we improve the running time by a logarithmic factor and prove
a matching lower bound. That is, we prove the following result:

Theorem 1. Let P and S be disjoint sets of n and m points in the plane, respectively. An optimal bottleneck full Steiner tree of P with
respect to S can be computed in O ((n + m) logm) time, which is optimal in the algebraic computation tree model.

If n = 2, i.e., the set P only consists of two points, say p and q, then an optimal bottleneck full Steiner tree can be
obtained in the following way: In O (m log m) time, compute a Euclidean minimum spanning tree of the set P ∪ S and
return the path in this tree between p and q. The correctness of this algorithm follows from basic properties of minimum
spanning trees.

In the rest of this paper, we will assume that n � 3. This implies that any full Steiner tree of P with respect to S contains
at least one vertex from S; in other words, the skeleton tree has a non-empty vertex set S ′ .

✩ Research supported by NSERC.

* Corresponding author.
E-mail address: michiel@scs.carleton.ca (M. Smid).

0925-7721/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comgeo.2013.10.001

http://dx.doi.org/10.1016/j.comgeo.2013.10.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:michiel@scs.carleton.ca
http://dx.doi.org/10.1016/j.comgeo.2013.10.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2013.10.001&domain=pdf


378 A. Biniaz et al. / Computational Geometry 47 (2014) 377–380

2. The algorithm

2.1. Preprocessing

We compute a Euclidean minimum spanning tree MST(S) of the point set S , which can be done in O (m log m) time.
Then we compute the bipartite graph Υ6(P , S) with vertex set P ∪ S that is defined as follows: Consider a collection of
six cones, each of angle π/3 and having its apex at the origin, that cover the plane. For each point p of P , translate these
cones such that their apices are at p. For each of these translated cones C for which C ∩ S �= ∅, the graph Υ6(P , S) contains
one edge connecting p to a nearest neighbor in C ∩ S . (This is a variant of the well-known Yao-graph as introduced in [5].)
Using an algorithm of Chang et al. [3], together with a point–location data structure, the graph Υ6(P , S) can be constructed
in O ((n + m) logm) time.

The entire preprocessing algorithm takes O ((n + m) log m) time.

2.2. A decision algorithm

Let λ∗ denote the optimal bottleneck length, i.e., the bottleneck length of an optimal bottleneck full Steiner tree of P with
respect to S .

In this section, we present an algorithm that decides, for any given real number λ > 0, whether λ∗ < λ or λ∗ � λ. This
algorithm starts by removing from MST(S) all edges having length at least λ, resulting in a collection T1, T2, . . . of trees.
The algorithm then computes the set J of all indices j for which the following holds: Each point p of P is connected by
an edge of Υ6(P , S) to some point s, such that (i) s is a vertex of T j and (ii) the Euclidean distance |ps| is less than λ.
As we will prove later, this set J has the property that it is non-empty if and only if λ∗ < λ. The formal algorithm is given
in Fig. 1.

Observe that, at any moment during the algorithm, the set J has size at most six. Therefore, the running time of this
algorithm is O (n + m).

Before we prove the correctness of the algorithm, we introduce the following notation. Let j be an arbitrary element in
the output set J of algorithm CompareToOptimal(λ). It follows from the algorithm that, for each i with 1 � i � n, there
exists a point si in S such that

• si is a vertex of T j ,
• (pi, si) is an edge in Υ6(P , S), and
• |pi si | < λ.

We define T j to be the full Steiner tree with skeleton tree T j and external edges (pi, si), 1 � i � n. Observe that, since
each edge of T j has length less than λ, the bottleneck length of T j is less than λ. Therefore, we have proved the following
lemma.

Algorithm CompareToOptimal(λ);
remove from MST(S) all edges having length at least λ;
denote the resulting trees by T1, T2, . . .;
number the points of P arbitrarily as p1, p2, . . . , pn;
J := ∅;

for each edge (p1, s) in Υ6(P , S)

do j := index such that s is a vertex of T j ;
if |p1s| < λ

then J := J ∪ { j}
endif

endfor;
for i := 2 to n
do for each j ∈ J

do keep( j) := false
endfor;
for each edge (pi , s) in Υ6(P , S)

do j := index such that s is a vertex of T j ;
if j ∈ J and |pi s| < λ

then keep( j) := true
endif

endfor;
J := { j ∈ J : keep( j) = true}

endfor;
return the set J

Fig. 1. This algorithm takes as input a real number λ and returns a set J . This set J is non-empty if and only if λ∗ < λ.
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