
Computational Geometry 46 (2013) 756–773

Contents lists available at SciVerse ScienceDirect

Computational Geometry: Theory and
Applications

www.elsevier.com/locate/comgeo

Dynamic well-spaced point sets

Umut A. Acar a, Andrew Cotter b,∗, Benoît Hudson c, Duru Türkoğlu d

a Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
b Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
c Autodesk, Inc., Montreal, QC, Canada
d Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 August 2011
Accepted 22 November 2012
Available online 6 December 2012
Communicated by R. Fleischer

Keywords:
Well-spaced point set
Clipped Voronoi cell
Mesh refinement
Dynamic stability
Self-adjusting computation

In a well-spaced point set the Voronoi cells all have bounded aspect ratio. Well-spaced
point sets satisfy some important geometric properties and yield quality Voronoi or
simplicial meshes that are important in scientific computations. In this paper, we consider
the dynamic well-spaced point set problem, which requires constructing a well-spaced
superset of a dynamically changing input set, e.g., as input points are inserted or
deleted. We present a dynamic algorithm that allows inserting/deleting points into/from
the input in O (log�) time, where � is the geometric spread, a natural measure
that yields an O (logn) bound when input points are represented by log-size words.
We show that this algorithm is time-optimal by proving a lower bound of Ω(log�) for
a dynamic update. We also show that this algorithm maintains size-optimal outputs: the
well-spaced supersets are within a constant factor of the minimum possible size. The
asymptotic bounds in our results work in any constant dimensional space. Experiments
with a preliminary implementation indicate that dynamic changes may be performed with
considerably greater efficiency than re-constructing a well-spaced point set from scratch.
To the best of our knowledge, these are the first time- and size-optimal algorithms for
dynamically maintaining well-spaced point sets.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Given a hypercube B in R
d , we call a set of points M ⊂ B well-spaced if for each point p ∈ M the ratio of the distance

to the farthest point of B in the Voronoi cell of p divided by the distance to the nearest neighbor of p in M is small [32].
Well-spaced point sets are strongly related to meshing and triangulation for scientific computing, which require meshes to
have certain qualities. In two dimensions, a well-spaced point set induces a Delaunay triangulation with no small angles,
which is known to be a good mesh for the finite element method. In higher dimensions, well-spaced point sets can be post-
processed to generate good simplicial meshes [8,20]. The Voronoi diagram of a well-spaced point set is also immediately
useful for the control volume method [22].

A well-spaced superset M of a point set N may be constructed by inserting so-called Steiner points, although one must
take care to insert as few Steiner points as possible. We call the output and such an algorithm size-optimal if the size of the
output, |M|, is within a constant factor of the size of the smallest possible well-spaced superset of the input. This problem
has been studied since the late 1980s (e.g., [6,10,26]), with several recent results obtaining fast runtime [14,16,31].

We are interested in the dynamic version of the problem, which requires maintaining a well-spaced output (M) while
the input (N) changes dynamically due to insertion and deletion of points. Upon a modification to the input, the dynamic

* Corresponding author.
E-mail addresses: umut@cs.cmu.edu (U.A. Acar), cotter@ttic.edu (A. Cotter), benoit.hudson@autodesk.com (B. Hudson), duru@cs.uchicago.edu

(D. Türkoğlu).

0925-7721/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comgeo.2012.11.007

http://dx.doi.org/10.1016/j.comgeo.2012.11.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:umut@cs.cmu.edu
mailto:cotter@ttic.edu
mailto:benoit.hudson@autodesk.com
mailto:duru@cs.uchicago.edu
http://dx.doi.org/10.1016/j.comgeo.2012.11.007

U.A. Acar et al. / Computational Geometry 46 (2013) 756–773 757

algorithm should efficiently update the output, preserving size-optimality with respect to the new input. There has been
relatively little progress on solving the dynamic problem. Existing solutions either do not produce size-optimal outputs
(e.g., [9,25]) or they are asymptotically no faster than running a static algorithm from scratch [12,21,23].

In this paper, we present a dynamic algorithm for the well-spaced point set problem. Our algorithm always returns size-
optimal outputs, and requires worst-case O (log �) time for an input modification (an insertion or a deletion). Here, � is
the geometric spread, a common measure, defined as the ratio of the diameter of the input set to the distance between the
closest pair of points in the input. Our update runtime is optimal in the worst-case and our algorithms consume linear space
in the size of the output. If the geometric spread is polynomially bounded in the size of the input, then log � = O (log n)

(e.g., when the input is specified using log n-bit numbers). For the purposes of our bounds, we assume the dimension of the
space, d, to be an arbitrary constant.

To solve the dynamic problem, we first present an efficient construction algorithm for generating size-optimal, well-
spaced supersets (algorithm in Sections 5 and 6, proofs in Sections 7 and 8). In addition to the output, the construction
algorithm builds a computation graph that represents the operations performed during the execution and the dependencies
between them. A key property of this algorithm is that it is stable in the sense that when run with similar inputs, e.g., that
differ in only one point, it produces similar computation graphs and outputs. We make this property precise by describing
a distance measure between the computation graphs of two executions and bounding this distance by O (log �) when
inputs differ by a single point (Section 9). Taking advantage of this bound, we design a change-propagation algorithm that
performs dynamic updates in O (log �) time by identifying the operations that are affected by the modification to the
input and deleting/re-executing them as necessary (Section 10). For the lower bound, we show that there exist inputs and
modifications that require Ω(log �) Steiner points to be inserted into/deleted from the output (Section 11).

The efficiency of our dynamic update algorithm directly depends on stability. In order to achieve stability, we use several
techniques in the design of our construction algorithm. Generalizing the recently suggested choices of Steiner points [14,18],
we propose an approach for picking Steiner points by making local decisions only, using clipped Voronoi cells. Picking Steiner
points locally makes it possible to structure the computation into Θ(log �) ranks, inductively ensuring that at the end
of each rank the points up to that rank are well-spaced [31]. Processing points in rank order alone does not guarantee
stability: we further partition points at a given rank into a constant number of color classes such that the points in each
color class depend only on the points in the previous color classes. These techniques enable us to process each point only
once and help isolate and limit the effects of a modification. Furthermore, our dynamic update algorithm returns an output
and a computation graph that are isomorphic to those that would be obtained by re-executing the static algorithm with
the modified input (Lemma 10.2). Consequently, the output remains both well-spaced and size-optimal with respect to the
modified input (Theorem 10.3).

The approach of designing a stable construction algorithm and then providing a dynamic update algorithm based on
change propagation is inspired by recent advances on self-adjusting computation (e.g., [2,3,13,19]). In self-adjusting compu-
tation, programs can respond automatically to modifications to their data by invoking a change-propagation algorithm [1].
The data structures required by change propagation are constructed automatically. Our computation graphs are abstract rep-
resentations of these data structures. Similarly our dynamic update algorithms are adaptations of the change-propagation
algorithm for the problem of well-spaced point sets. Self-adjusting computation has been found to be effective in kinetic
motion simulation of three-dimensional convex hulls [3]. Although these initial findings are empirical, they have motivated
the approach that we present in this paper. Since our approach takes advantage of the structure of a static algorithm to
perform dynamic updates, it can be viewed as a dynamization technique, a technique which has been used effectively for
a relatively broad range of algorithms (e.g., [7,11,24,27]).

To assess the effectiveness of the proposed dynamic algorithm, we present a prototype implementation, and report the
results of an experimental evaluation (Section 12). Our experimental results confirm our theoretical bounds, and demon-
strate that dynamic updates to an existing well-spaced point set can be performed far more cheaply than re-computing
from scratch. These results suggest that a well-optimized implementation can perform very well in practice.

This paper is the journal version of the following two abstracts: An efficient query structure for mesh refinement published
in the proceedings of the 20th Annual Canadian Conference on Computational Geometry [17], and Dynamic well-spaced point
sets published in the proceedings of the 26th Annual Symposium on Computational Geometry [4].

2. Preliminaries

We present some definitions used throughout the paper, describe the technique that we use for selecting Steiner vertices,
and present an overview of the point location data structure we use in our algorithms.

Given a set of points N, we define the geometric spread (�) to be the ratio of the diameter of N to the distance between
the closest pair in N. We say that a d-dimensional hypercube B is a bounding box if N ⊂ B and each edge of B has length
within a constant factor of the diameter of N. Without loss of generality, we take the bounding box of N to be B = [0,1]d .
Given N as input, our algorithm constructs a well-spaced output M ⊂ B that is a superset of N. We use the term point to
refer to any point in B and the term vertex to refer to the input and output points. Consider a vertex set M ⊂ B . The nearest-
neighbor distance of v in M , written NNM (v), is the distance from v to the nearest other vertex in M . The Voronoi cell of v
in M , written VorM (v), consists of points x ∈ B such that for all u ∈ M , |vx| � |ux|. Following Talmor [32], a vertex v is

Download English Version:

https://daneshyari.com/en/article/414779

Download Persian Version:

https://daneshyari.com/article/414779

Daneshyari.com

https://daneshyari.com/en/article/414779
https://daneshyari.com/article/414779
https://daneshyari.com

