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ested in comparing different posterior distributions. Strongly consistent estimators for the
¢-divergence between two posterior distributions are developed. The proposed estimators
alleviate known computational difficulties with estimating normalizing constants. This ap-
proach can be used to study the impact that using an approximate likelihood has on the

g‘fﬁ‘;{g&ime resulting posterior distribution and also to compare the effectiveness of different model
Kullback-Leibler approximations. The methodology is applied to two first-order emulator models and an
Hellinger distance oceanographic application where evaluation of the likelihood function involves the solu-
Model error tion to a partial differential equation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In modern science we use models with ever increasing complexity, motivated by large, multivariate data sets exhibiting
rich covariance structures. Unfortunately, in many such cases we are forced to use approximations of various kinds, given
that analytical calculations are often impossible. As a classical example, Bayesian inference is typically done via Markov
chain Monte Carlo (MCMC) methods and one would approximate samples from the posterior distribution with draws from
a simulated Markov chain. Appropriate asymptotic theoretical results are making this approach acceptable to the scientific
community. However, it is rare that one would quantify the magnitude of such an approximation and describe its conse-
quences on the subsequent inference steps.

The current work is motivated by the following typical Bayesian approach to the inverse problem of estimating the
coefficients of a partial differential equation (PDE), given noisy observations of its solution. We refer the reader to Stuart
(2010), Wunsch (1996) and Abramovich and Silverman (1998) for some theoretical aspects of this problem. Briefly, one is
interested in estimating a multi-dimensional parameter # representing the coefficients and boundary values of a PDE, based
on observations Y representing discrete and noisy measurements of its solution, represented as the forward map: 6 — F(6).
Typically, this is an ill-posed inverse problem as there usually does not exist an inverse operator Y > F~!(Y). Moreover, as
the data are contaminated by noise, it may be possible that Y is not even in the range of F(-). In a Bayesian framework, one
explores the posterior distribution p(@ | Y, F), which is typically proper under very mild assumptions. However, in practice
the forward map F(-) is unavailable and is consequently replaced by an approximation F, and one reports samples from the
approximate posterior p(@ | Y, F). Our goal is to quantify the model error, which we define as the discrepancy between two
distributions of interest. In this setting, model error is the difference between p(@ | Y, F) and p(6 | Y, F).
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The issue of model error resulting from using various approximations has been well documented in the literature. In the
majority of cases, scientists account for model bias by introducing a new field which can be estimated through a hierarchical
Bayesian framework. For example, Kennedy and O’Hagan (2001) account for model error in the predictions from computer
model output by including a model inadequacy function to correct for inaccuracies in the computer model. The authors
assign Gaussian process prior distributions to both the computer model output and model inadequacy functions. Their work
has been extended to accommodate high dimensional computer model output by using the singular value decomposition to
reduce the dimensionality (Higdon et al., 2008). In this case, prior distributions which are linear combinations of Gaussian
processes on both the computer model output and the model inadequacy function are selected.

In a different framework, Majda and Gershgorin (2010) use empirical information theory to quantify the uncertainty in
atmospheric/oceanic models. Empirical information theory builds the least biased probability measure that is consistent
with observed measurements of functions of the variables of interest. The discrepancy between the least biased probability
measure and a second probability measure is quantified using the relative entropy, or the Kullback-Leibler distance. The
authors show that minimizing the Kullback-Leibler distance to the true model is equivalent to minimizing the distance to
the least biased probability measure. An information theoretic approach has also been used in model selection to determine
the effective number of parameters in a Bayesian hierarchical model, as in Spiegelhalter et al. (2002). This relies on the
deviance which quantifies the difference between a model with a subset of parameters versus the saturated model. The
authors develop a Deviance Information Criterion which takes the difference between the posterior mean of the deviance
and the deviance at the posterior estimates of the parameters of interest.

The above methods have the common goal of improving accuracy in predictions. However, the aforementioned do not
offer any indication on the impact of model bias when the goal is parameter estimation (rather than state prediction).
Parameter estimation requires exploring the distribution of interest. When approximations are used a different distribution
is explored, and the resulting inference will be affected. A first step in studying the impact that approximations have on
inference procedures is to understand how different the two distributions under study are. Throughout the paper we use
the term model to refer to a probability model, i.e., a probability distribution. In a more general framework, let § € R? be a
parameter of interest, and let P(d@) and G(d@) be two probability models defined over R%. In a Bayesian analysis, these would
be two posterior distributions for # constructed under different scenarios. We understand that P is the ideal or target model
which is computationally intractable. For instance, one can think of P as the model that would be used if there were unlimited
computational resources. The working model G is tractable at least from a computational stand-point, and it represents an
approximation of P. We aim to calculate or estimate the model error, i.e., a quantity D(P, G) which describes how different
P and G are. Estimating D(P, G) allows one to assess the quality of model approximations with regard to their influence of
parameter estimation.

Approximating target models is common in current practice and occurs for a variety of reasons. For example, Approx-
imate Bayesian Computation is a large class of methods which rely heavily on approximations. In this case the likelihood
function is analytically and computationally intractable, and one would approximate the posterior distribution using a re-
jection simulation approach. A recent overview of this approach is given in Marin et al. (2011). Another instance occurs
when likelihood evaluation involves intractable integrals over very large spaces, see Beaumont et al. (2002) for an example
in phylogenetics. In these situations, one integrates out nuisance parameters. However, since such integrals can rarely be
evaluated exactly, the solution is to estimate nuisance parameters off-line and use these estimates in the likelihood evalu-
ation, thus introducing model error. In Bayesian environmental applications, scientists use numerical solvers based on fine
grids, discrete-time approximations, etc., without attempting to quantify the bias introduced by this practice (Wikle and
Hooten, 2006; Nychka et al., 2002).

In our work, we select D(P, G) to be a ¢-divergence (defined below), and we suggest a general Monte Carlo method
for estimating it. We work under the following general assumptions. The approximate model, i.e. G(d#), can be explored
efficiently and one could sample this distribution either directly or via a MCMC approach. We assume that the target model
P(d#) is very computationally demanding, and one would never consider running a MCMC sampler to explore it. Note that
our methodology only requires G(d#) and P(d#) to have densities which are known up to a normalizing constant. In Section 2,
we provide an overview of discrepancy metrics between probability measures. In Section 3, we introduce the proposed
estimator for D(P, G) and discuss its asymptotic properties. Section 4 illustrates our methodology in the context of emulator
models, and Section 5 focuses on a more complex application from oceanography. Concluding remarks are given in Section 6.

2. Preliminaries

Let P and G be two probability measures defined on (R?, B(R%)). We assume that P and G have densities p and g with re-
spect to the Lebesgue measure y, so that p, g : RY — [0, 00). Let ¢ : [0, 00) — R be a convex function such that ¢(1) = 0.
The ¢-divergence between P and G is defined as

Dy (P, G) :/ gx)-¢ <&> wn(dx). (m
Rd gx)

We note that Dy (P, G) may not be a metric in the proper sense. However, (1) can still be useful for defining a notion of
distance between probability measures. Using Jensen’s inequality, it follows that Dy (P, G) > 0, and Dy4(P, G) = 0 if and
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