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a b s t r a c t

Estimating a covariance matrix is an important task in applications where the number of
variables is larger than the number of observations. Shrinkage approaches for estimating
a high-dimensional covariance matrix are often employed to circumvent the limitations
of the sample covariance matrix. A new family of nonparametric Stein-type shrinkage
covariance estimators is proposed whose members are written as a convex linear
combination of the sample covariance matrix and of a predefined invertible target matrix.
Under the Frobenius norm criterion, the optimal shrinkage intensity that defines the best
convex linear combination depends on the unobserved covariance matrix and it must
be estimated from the data. A simple but effective estimation process that produces
nonparametric and consistent estimators of the optimal shrinkage intensity for three
popular target matrices is introduced. In simulations, the proposed Stein-type shrinkage
covariance matrix estimator based on a scaled identity matrix appeared to be up to 80%
more efficient than existing ones in extreme high-dimensional settings. A colon cancer
datasetwas analyzed to demonstrate the utility of the proposed estimators. A rule of thumb
for adhoc selection among the three commonly used target matrices is recommended.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Theproblemof estimating large covariancematrices arises frequently inmodern applications, such as in genomics, cancer
research, clinical trials, signal processing, financial mathematics, pattern recognition and computational convex geometry.
Formally, the goal is to estimate the covariance matrix 6 based on a sample of N independent and identically distributed
(i.i.d) p-variate random vectors X1, . . . ,XN with mean vector µ in the ‘‘small N , large p’’ paradigm, that is when N is a lot
smaller compared to p. It is a well-known fact that the sample covariance matrix

S =
1

N − 1

N
i=1

(Xi − X̄)(Xi − X̄)T ,

where X̄ =
N

i=1 Xi/N is the sample mean vector, is not performing satisfactory in high-dimensional settings. For example,
S is singular even when 6 is a strictly positive definite matrix. Recent research in estimating high-dimensional covariance
matrices includes banding, tapering, penalization and shrinkagemethods.We focus on the Steinian shrinkagemethod (Stein,
1956) as adopted by Ledoit and Wolf (2004) because it leads to covariance matrix estimators that are: (i) non-singular,
(ii) well-conditioned, (iii) invariant to permutations of the order of the p variables, (iv) consistent to departures from
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a multivariate normal model, (v) not necessarily sparse, (vi) expressed in closed form and (vii) computationally cheap
regardless of p.

Ledoit and Wolf (2004) proposed a Stein-type covariance matrix estimator for 6 based on

S⋆
= (1 − λ)S + λνIp, (1)

where Ip is the p × p identity matrix, and where λ and ν minimize the risk function E

∥S⋆

− 6∥
2
F


, that is

λ =
E

∥S − 6∥

2
F


E

∥S − νIp∥2

F


and

ν =
tr(6)

p
.

The optimal shrinkage intensity parameter λ in (1) suggests how much we must shrink the eigenvalues of the sample
covariance matrix S towards the eigenvalues of the target matrix νIp. For example, λ = 0 implies no contribution of νIp
to S⋆, while λ = 1 implies no contribution of S to S⋆. Intermediate values for λ reveal the simultaneous contribution of S
and νIp to S⋆. Despite the attractive interpretation, S⋆ is not a covariance matrix estimator because ν and λ depend on the
unobservable covariancematrix6. For this reason, Ledoit andWolf (2004) proposed to plug-in nonparametric N-consistent
estimators for ν and λ in (1) and use the resulting matrix as a shrinkage covariance matrix estimator for 6. Although ν
seems to be adequately estimated by ν̂ = tr(S)/p, we noticed via simulations that the estimator of λ proposed by Ledoit
andWolf (2004) was biased in extreme high-dimensional settings andwhen6 = Ip. This is counter-intuitive because λ = 1
and the plug-in estimator of S⋆ is expected to be as close as possible to the target matrix νIp. In addition, this observation
underlines the importance of choosing a target matrix that approximates well the true underlying dependence structure.
To this direction, Fisher and Sun (2011) proposed Stein-type shrinkage covariance matrix estimators for alternative target
matrices. However, they are no longer nonparametric as their construction was based on a multivariate normal model
assumption.

Motivated by the above, we improve estimation of the optimal shrinkage intensity by providing a consistent estimator
of λ in high-dimensional settings. To construct the estimator of λ we follow three simple steps: (i) expand the expectations
in the numerator and denominator of λ assuming amultivariate normal model, (ii) prove that this ratio, say λ⋆, is asymptot-
ically equivalent to λ, and (iii) replace each unknown parameter in λ⋆ with unbiased and consistent estimators constructed
using U-statistics. The last step is essential in our proposal so as to ensure consistent and nonparametric estimation of λ.
Further, we relax the normality assumption in Fisher and Sun (2011) for target matrices other than νIp in (1) and we illus-
trate how to estimate consistently the corresponding optimal shrinkage intensities in high-dimensional settings. In other
words, we propose a new nonparametric family of Stein-type shrinkage estimators suitable for high-dimensional settings
that preserve the attractive properties mentioned in the first paragraph and can accommodate arbitrary target matrices.

The rest of this paper is organized as follows. In Section 2,wepresent theworking framework that allowsus tomanage the
high-dimensional setting. Section 3 contains themain results where we derive consistent and nonparametric estimators for
the optimal shrinkage intensity of three different target matrices. We evaluate the performance of the proposed covariance
matrix estimators via simulations in Section 4. In Section 5, we illustrate the use of the proposed estimators in a colon cancer
study andwe recommend a rule of thumb for selecting the targetmatrix. In Section 6,we summarize our findings and discuss
future research. The technical details can be found in Appendix. Throughout the paper, we use ∥A∥

2
F = tr(ATA)/p to denote

the scaled Frobenius norm of A, tr(A) to denote the trace of the matrix A, DA to denote the diagonal matrix with elements
the diagonal elements of A, and A◦B to denote the Hadamard product of thematrices A and B, i.e., thematrix whose (a, b)th
element is the product of the corresponding elements of A and B. In the above, it is implicit that A and B are p× pmatrices.

2. Framework for high-dimensional settings

Let X1, . . . ,XN be a sample of i.i.d. p-variate random vectors from the nonparametric model

Xi = 61/2Zi + µ, (2)

where µ = E[Xi] is the p-variate mean vector, 6 = cov[Xi] = 61/261/2 is the p × p covariance matrix, and Z1, . . . , ZN is
a collection of i.i.d. p-variate random vectors. Instead of distributional assumptions, moments restrictions are imposed on
the random variables in Zi. In particular, let Zia be the ath random variable in Zi and suppose that E[Zia] = 0, E[Z2

ia] = 1,
E[Z4

ia] = 3 + B with −2 ≤ B < ∞ and for any nonnegative integers l1, . . . , l4 such that
4

ν=1 lν ≤ 4

E[Z l1
ia1

Z l2
ia2

Z l3
ia3

Z l4
ia4

] = E[Z l1
ia1

]E[Z l2
ia2

]E[Z l2
ia3

]E[Z l4
ia4

], (3)

where the indexes a1, . . . , a4 are distinct. The nonparametric model (2) includes the p-variate normal distribution Np(µ, 6)
as a special case obtained if Zia are i.i.d. N(0, 1) random variables. Since B = 0 under a multivariate normal model, B can be
interpreted as a measure of departure of the fourth moment of Zia to that of a N(0, 1) random variable. The assumption of



Download English Version:

https://daneshyari.com/en/article/414933

Download Persian Version:

https://daneshyari.com/article/414933

Daneshyari.com

https://daneshyari.com/en/article/414933
https://daneshyari.com/article/414933
https://daneshyari.com

