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a b s t r a c t

Methodology is proposed for the construction of prediction intervals for integrals of
Gaussian random fields over bounded regions (called block averages in the geostatistical
literature) based on observations at a finite set of sampling locations. Two bootstrap
calibration algorithms are proposed, termed indirect and direct, aimed at improving upon
plug-in prediction intervals in terms of coverage probability. A simulation study is carried
out that illustrates the effectiveness of both procedures, and these procedures are applied
to estimate block averages of chromium traces in a potentially contaminated region in
Switzerland.
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1. Introduction

In this work we consider the problem of constructing prediction intervals for the integral of a spatially varying quantity
over a bounded region (also called block average in the geostatistical literature), based on observations at a finite set of
sampling locations. This problem is of importance in many earth sciences, such as hydrology, mining and pollution assess-
ment, where interest often centers on spatial averages (rather than on ensemble averages). This was, in a mining context, a
problem that D.G. Krige considered and that motivated G. Matheron to develop the geostatistical methodology named after
him (kriging): estimating the average block ore-grade over amining panel based onmeasurements of internal core-samples
(Cressie, 1990; Chilès and Delfiner, 1999). As the data support are ‘points’ while the support of the quantity of interest is a
region of positive area, this is an example of what is generically called a change of support problem; see Gotway and Young
(2002) for an extensive review.

The problem of ‘point prediction’ of an integral of a random field over a bounded region has been considered extensively
in the literature, for instance, by Cressie (1993), Chilès and Delfiner (1999), Cressie (2006), De Oliveira (2006) and Gotway
and Young (2007). But the problem of ‘interval prediction’ has not received similar attention, and it could even be argued
that it has not been adequately explored.When themodel covariance parameters are not known, the commonpractice in the
above works is to use a two-stage approach: the covariance parameters are first estimated and then prediction intervals are
computed by treating these estimates as if theywere the true covariance parameters. This is called the plug-in (or estimative)
approach. It is by now well known that plug-in prediction intervals have coverage properties that differ from the nominal
coverage properties and are often overly optimistic, having actual coverage probability smaller than the desired coverage
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probability. The main approaches to correct this drawback of plug-in prediction intervals are the Bayesian and bootstrap
approaches. Both approaches have been explored for the case of inference about the quantity of interest at single locations,
but similar approaches for the case of inference about spatial averages do not seem to have been explored,with the exception
of the paper by Gelfand et al. (2001)who proposed a Bayesian approach. This work studies bootstrap calibration approaches.

A general idea for the construction of improved prediction intervals is to calibrate plug-in prediction intervals, namely,
to adjust plug-in prediction limits in such a way that the resulting prediction interval has coverage probability closer to the
desired coverage probability. Two variants of this general idea have been explored that differ on how the adjustment ismade.
In the first variant the adjusted limit is obtained bymodifying the nominal coverage probability, a variant termed as indirect
by Ueki and Fueda (2007). This variant was initially proposed by Cox (1975), and later studied further by Atwood (1984),
Beran (1990), Escobar and Meeker (1999) and Lawless and Fredette (2005). In the second variant additive adjustments are
made to plug-in prediction limits, a variant termed as direct byUeki and Fueda (2007). This variantwas studied by Barndorff-
Nielsen and Cox (1994, 1996), Vidoni (1998) and Ueki and Fueda (2007). For both variants the adjustments can be computed
either analytically (Cox, 1975; Atwood, 1984; Barndorff-Nielsen and Cox, 1996; Vidoni, 1998) or by simulation (Beran, 1990;
Escobar and Meeker, 1999; Lawless and Fredette, 2005; Ueki and Fueda, 2007). Analytical adjustments are often complex
and difficult to obtain, while simulation-based adjustments (also called bootstrap calibration) are usually more practically
feasible. The simulation-based indirect calibration variant has been studied and applied for the construction of prediction
intervals in random fields at single locations by Sjöstedt-de Luna and Young (2003) and De Oliveira and Rui (2009), but
bootstrap calibration does not seem to have been studied for the construction of prediction intervals for spatial averages of
random fields.

In this work we study the application of both indirect and direct bootstrap calibration strategies to the construction of
prediction intervals for spatial averages of Gaussian random fields over bounded regions. We extend the indirect bootstrap
calibration algorithm proposed by Sjöstedt-de Luna and Young (2003) for the construction of prediction intervals for the
random field at single locations to the construction of prediction intervals for spatial averages over bounded regions. Also,
we extend the direct bootstrap calibration algorithm proposed by Ueki and Fueda (2007) for i.i.d. data to the construction
of prediction intervals for spatial averages, which relies on a ‘predictive distribution’ that only depends on the covariance
parameters. A simulation study is carried out to illustrate the effectiveness of both types of calibrated prediction intervals
at reducing the coverage probability error of plug-in prediction intervals. Finally, the proposed methodology is applied to
the construction of prediction intervals for spatial averages of chromium traces in a potentially contaminated region in
Switzerland.

2. Model and problem formulation

Consider the random field {Z(s) : s ∈ D} representing the spatial variation of a quantity of interest, thought to vary
continuously over the region of interest D ⊂ R2. It is assumed that D is compact and |D| > 0, where |D| denotes the area of
D (or more precisely its Lebesgue measure), and Z(·) is an L2 random field, i.e., E{Z2(s)} < ∞ for all s ∈ D. The mean and
covariance functions of the random field are assumed to be given by

E{Z(s)} =

p
j=1

βjfj(s) =: µ(s) and cov{Z(s), Z(u)} = σ 2Kφ(s,u), (1)

where f (s) = (f1(s), . . . , fp(s))′ are known location-dependent covariates, β = (β1, . . . , βp)
′
∈ Rp are unknown regression

parameters, σ 2
= var{Z(s)} > 0 is unknown, Kφ(s,u) is a correlation function in R2 that is continuous on D × D, and φ is

an unknown correlation parameter.
The data consist of possibly noisy measurements of the random field at distinct sampling locations s1, . . . , sn ∈ D, say

Zobs = (Z1,obs, . . . , Zn,obs)′, where

Zi,obs = Z(si)+ ϵi, i = 1, . . . , n; (2)

here {ϵi}
n
i=1

i.i.d.
∼ N(0, τ 2) represent measurement errors independently distributed of the random field Z(·) and τ 2 ≥ 0 is

the so-called nugget effect. The model parameters are then the regression parameters β ∈ Rp and covariance parameters
θ = (σ 2, φ, τ 2) ∈ Θ ⊂ Rq.

The goal is to make inference about a spatial (weighted) average of the random field over a subregion of D of positive
area, say B ⊆ D, also know as a block average in the geostatistical literature. This spatial average is the random variable
given by the (stochastic) integral

ZB =
1
|B|


B
w(s)Z(s)ds, (3)

wherew(·) is known, nonnegative and piecewise continuous on D, and the integral is defined in mean square sense; its def-
inition and some of its properties are given in the next section. For α ∈ (0, 1)we are interested in constructing 100(1−α)%
prediction intervals for ZB, that is, we seek random intervals


L(Zobs),U(Zobs)


for which

Pβ,θ {L(Zobs) ≤ ZB ≤ U(Zobs)} = 1 − α, for all β ∈ Rp, θ ∈ Θ,

where Pβ,θ {·} refers to the joint distribution of (Z′

obs, ZB)when the true parameter vector is (β′, θ).
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