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a b s t r a c t

This paper studies tools for checking the validity of a parametric regression model, when
both response and predictors are unobserved and distorted in a multiplicative fashion by
an observed confounding variable. A residual based empirical process test statistic marked
by proper functions of the regressors is proposed. We derive asymptotic distribution of the
proposed empirical process test statistic: a centered Gaussian process under the null hy-
pothesis and a non-centered one under local alternatives converging to the null hypothesis
at parametric rates. We also suggest a bootstrap procedure to calculate critical values. Sim-
ulation studies are conducted to demonstrate the performance of the proposed test statistic
and real examples are analyzed for illustrations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In many applications of regression analysis, the variables of interest may be observed with measurement errors. A dis-
tortion errors-in-variables model can be written as

Y = g(X)+ ε,

Ỹ = φ(U)Y ,
X̃ = ψ(U)X,

(1.1)

where Y is an unobservable response,X = (X1, X2, . . . , Xp)
τ is an unobservable continuous predictor vector (the superscript

τ denotes the transpose operator throughout this paper), g(·) is the regression function of Y on X and is usually unknown, Ỹ
and X̃ are the observed response and predictor vector andψ(·) is a p×p diagonalmatrix: diag


ψ1(·), . . . , ψp(·)


, whereφ(·)

and ψr(·) are unknown continuous distorting functions. The confounding variable U ∈ R1 is observable and independent
of (X, Y ). The diagonal form of ψ(·) indicates that the confounding variable U distorts unobserved Xr , r = 1, . . . , p in a
multiplicative fashion. The model error ε has mean zero and finite variance, and is independent with X and U .

Both Y and X are unobserved but distorted by a confounding variable U . This type of measurement error data usually
occurs in biomedical andhealth-related studies. For example, the bodymass index (BMI), height orweight usually have some
kinds of multiplicative effects on the primary variables of interest. Kaysen et al. (2002) analyzed that BMI plays the role of
confounding variable thatmay simultaneously contaminate the fibrinogen level and serum transferrin level of hemodialysis
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patients, and Kaysen et al. (2002) further divided the observed fibrinogen level-Ỹ and observed serum transferrin level-X̃
by BMI to eliminate the possible biases for the target parameters. While such a simple way of dividing confounding variable
BMI may lead to biased estimators. Şentürk and Müller (2006) proposed the distortion model Ỹ = φ(U)Y , X̃ = ψ(U)X as
the flexiblemultiplicative adjustment by involving unknown smooth distorting functionsφ(·) andψr(·)’s to reduce possible
biases and obtain proper estimators.

Recently, distortion errors-in-variables models have been received much attention in the literature. Readers can refer
to Cui et al. (2009), Li et al. (2010), Nguyen and Şentürk (2007, 2008), Nguyen et al. (2008), Şentürk and Müller (2005a,b,
2006, 2009), Şentürk and Nguyen (2009), Zhang et al. (2014a, 2013a,b, 2012a). However, these existing literature focus on
estimation rather than testing. To the best of our knowledge, there is little literature to considermodel checking for distortion
errors-in-variables data. Obviously, the correct model specification is fundamental and crucial in the data analysis.

In this paper, we consider a model checking problem for a distortion errors-in-variables parametric regression model.
Let M = {g(·, β) : β ∈ Θ ⊂ Rq

} be a given parametric family of functions, and β be an unknown q×1 parameter vector on
a compact parameter spaceΘ ⊂ Rq. It is interesting to test whether g(·) belongs toM or not. The null hypothesis is given as

H0 : g(X) = g(X, β0) for some β0 and g(·, ·), (1.2)
against the alternative hypothesis

H1 : g(X) ≠ g(X, β0) for any β0 and g(·, ·). (1.3)
If (Y ,X) can be observed, there exist many tests for testing H0 against H1. For example, when model g(X, β0) is to a lin-
ear regression model Xτβ0, Azzalini and Bowman (1993) used the smoothed residuals and proposed a pseudo-likelihood
ratio test statistic, which measures the distance between the nonparametric and the parametric models. Lin et al. (2002)
proposed objective and informative model-checking techniques based on the cumulative sum of residuals over certain co-
ordinates. For more general nonlinear parametric models, Härdle and Mammen (1993) and Stute et al. (1998a) proposed
model checking methods based on the squared deviation between the nonparametric and parametric fits and the empir-
ical process of the regressors marked by the residuals. Dette (1999) proposed a variance difference based test, Stute et al.
(1998b) proposed an innovation approach to conveniently calculate p-values, and Fan and Huang (2001) suggested an adap-
tive Neyman threshold test when model errors are normally distributed. For the use of nonparametric techniques for the
model checking problems, the book by Hart (1997) gave an extensive overview and useful references.

In the present article, we aim to develop a lack-of-fit test for checking H0 in the context of distortion measurement er-
rors. A residual empirical process based test statistic is proposed. Firstly, we calibrate unobserved (Y ,X) by using the direct
plug-in method proposed by Cui et al. (2009). The direct plug-in method is to estimate distortion functions φ(·), ψ(·) by
the traditional nonparametric kernel smoothing, say φ̂(·), ψ̂(·). Then we calibrated X and Y by ψ̂−1X̃, Ỹ/φ̂, denoted as X̂, Ŷ
respectively. Secondly, using these calibrated quantities, a nonlinear least squares estimator of β0 is obtained under the null
hypothesis H0. Large-sample properties of this nonlinear least squares estimator are investigated under the null hypothesis
and the local alternative hypothesis. It is noted that if H0 holds, the asymptotic results are the same as those obtained in
Zhang et al. (2012a)when the confounding variable is univariate. Thirdly, we propose a residual based empirical process test
statistic. This process is shown to be a centered Gaussian process under H0. Another advantage for this test process is that
it can detect local alternatives converging to H0 at the rate n−1/2. Lastly, we propose a test statistic based on the empirical
process test statistic, and a bootstrap procedure is also proposed to define p-values.

The rest of this paper is organized as follows. In Section 2, a test procedure is proposed and its asymptotic properties
are investigated. A bootstrap method is further proposed to define the critical values. In Section 3, simulation studies and
two real data analyses are respectively conducted to evaluate the proposed test statistic proposed in Section 2. The detailed
proofs of the theorems are given in the Appendix.

2. The testing procedure and main results

2.1. Covariate calibration

As the distorted Ỹ and X̃ are available, we first calibrate unobserved Y and X by using the observed i.i.d. sample
Ỹi, X̃i,Ui

n
i=1. In this subsection, we introduce the calibration estimation procedure. To ensure identifiability for the model

(1.1), it is assumed that
E[φ(U)] = 1, E[ψr(U)] = 1, (2.1)

r = 1, . . . , p. This identifiability condition is introduced by Şentürk and Müller (2005a), and it is analogous to the classical
additive measurement error setting: E(η) = 0 for W = Z + η, where W is error-prone and Z is error-free. Under the
independence condition between U and (Y ,X), the identifiability condition (2.1) entails that

E[Ỹ |U] = φ(U)E[Y |U] = φ(U)E[Y ] = φ(U)E[Ỹ ],

E[X̃r |U] = ψr(U)E[Xr |U] = ψr(U)E[Xr ] = ψr(U)E[X̃r ],
(2.2)

for r = 1, . . . , p. From (2.2), the calibration procedure for (Y , Xr) can be implemented by Y = Ỹ E[Ỹ ]/E[Ỹ |U] and Xr =

X̃rE[X̃r ]/E[X̃r |U] in the population level. Cui et al. (2009) and Zhang et al. (2012a) proposed a moment-based procedure for
those unobserved variables {Yi, Xri}

n
i=1. The moment-based procedure is summarized as follows.
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