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a b s t r a c t

Mortality data of disabled individuals are studied and parametric modeling approaches for
the force of mortality are discussed. Empirical observations show that the duration since
disablement has a strong effect on mortality rates. In order to incorporate duration effects,
different generalizations of the Lee–Carter model are proposed. For each proposed model,
uniqueness properties and fitting techniques are developed, and parameters are calibrated
tomortality observations of the German Pension Insurance. Difficulties with coarse tabula-
tion of the empirical data are solved by an age–period-duration Lexis diagram. Forecasting
is demonstrated for an exemplary model, leading to the conclusion that duration depen-
dence should not be neglected. While the data shows a clear longevity trend with respect
to age, significant fluctuations but no systematic trend is observed for the duration effects.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For the forecasting of future mortality rates, stochastic models have become more and more popular in demographic
research, since they allow for describing not only a future best estimate development but also the uncertainty around a
best estimate forecast. Applications range from governmental planning to private business, in particular insurance. In a
seminal paper, Lee and Carter (1992) suggested a parametric model that allows stochastic forecasting of a population’s
mortality with respect to age and calendar year. Apart from being the first model of its kind, the popularity of this approach
comes from (a) the reasonable fit for most Western countries, (b) the intuitive interpretation of the models parameters and
(c) the simplicity and ease of use in practice. A number of authors further developed the model of Lee and Carter (1992), for
example Brouhns et al. (2002), Cairns et al. (2006), Hyndman and Ullah (2007), and Renshaw and Haberman (2006).

In the present paper we study themortality of disabled people. The results have several applications, e.g., the planning of
health care infrastructure and the risk management of disability insurance portfolios. Based on empirical data, we suggest
and discuss several stochastic forecasting models. All our models are extensions of the Lee–Carter approach. This way we
retain themajor advantages of the Lee–Carter approach, in particular the simple calibration, the fact that all parameters have
an economic meaning, and the intuitive forecasting into the future. The most important covariates for the mortality rate of
healthy people are age and calendar year. For disabled people, several studies have shown that the duration since disable-
ment is a significant covariate (compare e.g. Segerer, 1993). Our data set confirms this observation. While the Lee–Carter
model neglects duration dependence, all our extensions feature this covariate.

Our empirical study is based on a data set from the Research Data Center of the German Pension Insurance (Forschungs-
datenzentrum der Rentenversicherung, FDZ-RV, 2011), which contains mortality data for disabled policyholders in the Ger-
man public disability insurance system in the years 1994–2009. All our proposed parametric models are judged on the basis
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of this data set. Our results show that it is necessary to consider duration dependence in order to achieve a reasonable fit to
the empirical observations.

While the literature offers various Lee–Carter extensions, none of them features duration dependence for disabled people.
Pitacco (2012) discusses duration dependence in the mortality of disabled people, looking from the perspective of private
disability insurance, but he disregards calendar year dependence. Interestingly, Pitacco (2012) presents a model that links
the mortality of disabled people with the mortality of healthy people, supposing some functional dependence. Some of our
models discussed later on also have such a structure. Aro et al. (2013) model the termination probabilities of a disability
insurance using logistic regression and fit their model to data of a Swedish insurance company. Renshaw and Haberman
(2000) describe permanent health insurance with a Poisson regression. Both papers take into account duration dependence,
but they do not show how their models can be forecast into the future. The classical Lee–Carter approach uses singular value
decomposition in order to decompose the age and timematrix to single age and time vectors. Russolillo et al. (2011) extends
the Lee–Carter model by a third factor that relates to the country and uses the Tucker3 method to decompose the age, time,
and country tensor to single age, time, and country vectors. Unlike the singular value decomposition, the Tucker3 method
is rather tricky and adds new problems. Christiansen et al. (2012) use a multivariate Lee–Carter generalization proposed
in Hyndman and Ullah (2007) to model mortality, disability and reactivation in a disability insurance, but they also neglect
durationdependence. Another streamof research is to directlymodel thehealth status of individuals byproportional hazards
models with (time-varying) frailty parameters, see e.g. Lam and Wong (2014). In doing so the observed duration effect is
interpreted as a partial cure of the disabled individuals.

The paper is structured as follows. In Section 2we explain our data set, we showhowwe calculate the empiricalmortality
rates, and we give some summary statistics. In Section 3 we fit the classical Lee–Carter model to our data. The main part
of the paper is Section 4, where different extensions of the Lee–Carter model are proposed and discussed. In Section 5 we
explain how to do forecasts, demonstrating the estimation of confidence intervals for one of our proposedmodels. Section 6
concludes.

2. Description of the data and estimation of the empirical mortality rates

In this section, we first describe the data set and then how the empirical mortality rates can be estimated from that
data. Our data set comes from the Research Data Center of the German Pension Insurance (Forschungsdatenzentrum der
Rentenversicherung, FDZ-RV, 2011) and includes 1% of the total portfolio of pensioners at the end of the years 1993–2008
(sample size 282,415) and 10% of the discontinuations of pensioners due to mortality in the years 1994–2009 (sample size
85,131). The 1% subset and the 10% subset were randomly chosen from the total data. We only consider reduced earnings
capacity pensions, which offer an income protection in case of partial or total disability. The data contains various covariates,
butwe consider only the age, the calendar time, and the duration since disablement. Notably, we do not consider the gender.
The German Pension Insurance paid the pensions monthly in advance, so that the last annuity within a year was paid at the
beginning of December. An insured person was classified as being alive if he survived till the end of November. Analogously,
if an insured person died in December, he was counted as dead in January. Therefore, we shift the calendar years by one
month such that the year starts at the beginning of December and ends at the end of November.

For the duration d since disablement we consider 7 different classes, where the first class 0 means that the person is up
to one year disabled, 1 between one and two years, and 6 between six and seven years. For durations of more than seven
years the observed data is scarce, so we exclude it. The data gives the duration only on a yearly time grid and, consequently,
we can only study discrete durations.We study policyholders with age x between 40 and 59. For younger ages the data basis
is small, and people with age 60 or older can alternatively receive old age pension benefits so that adverse selection effects
inhibit the data. In total, the covariates and their domains are

x ∈ {40, . . . , 59}, d ∈ {0, . . . , 6}, and t ∈ {1994, . . . , 2009}.
In the following theoretical discussion we use the general notation x ∈ {x1, . . . , xk}, d ∈ {d1, . . . , dl}, t ∈ {t1, . . . , tm}. We
now discuss the estimation of the mortality rates mxdt . We generally assume that mxdt is constant in between integer ages,
integer durations and integer years, that is,

mxdt = m⌊x⌋ ⌊d⌋ ⌊t⌋, x1 ≤ x < xk + 1, d1 ≤ d < dl + 1, t1 ≤ t < tm + 1.

LetLxdt be the number of observed individuals at the beginning of year t ∈ {t1, . . . , tm} that are age x ∈ {x1, . . . , xk} and be-
long to duration class d ∈ {d1, . . . , dl}. LetDxdt be the number of deaths observed in the time interval [t, t+1) of individuals
that have age x at death and that got disabled in year t−d. Our data set offers the numbersLxdt andDxdt for x ∈ {39, . . . , 59},
t ∈ {1994, . . . , 2009}, and d ∈ {0, . . . , 6}. It is tempting to use the fractionDxdt overLxdt as an estimator for mxdt , but this
would lead to a systematic error. We now explain how to avoid that systematic error by transforming Dxdt andLxdt to an
adequate death count Dxdt and exposure to risk Lxdt .

Suppose that for each individual we observe the exact date of birth b, the exact time of disablement i > b, and the exact
time of death e > i. ThenDxdt corresponds in a three-dimensional Lexis diagram with dimensions b, i, d to the solid

S(Dx,d,t) = {(b, i, e) : b < i < e, t ≤ e < t + 1, x ≤ e − b < x + 1, d − 1 ≤ t − i < d}.

The numberLxdt can be interpreted as the exposure that corresponds to the solid
S(Lx,d,t) = {(b, i, e) : b < i < e, t ≤ e < t + 1, x ≤ t − b < x + 1, d ≤ t − i < d + 1}.
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