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a b s t r a c t

Markov chainMonte Carlo (MCMC)methods are powerful computational tools for analysis
of complex statistical problems. However, their computational efficiency is highly depen-
dent on the chosen proposal distribution, which is generally difficult to find. One way to
solve this problem is to use adaptiveMCMCalgorithmswhich automatically tune the statis-
tics of a proposal distribution during the MCMC run. A new adaptive MCMC algorithm,
called the variational Bayesian adaptive Metropolis (VBAM) algorithm, is developed. The
VBAM algorithm updates the proposal covariance matrix using the variational Bayesian
adaptive Kalman filter (VB-AKF). A strong law of large numbers for the VBAM algorithm is
proven. The empirical convergence results for three simulated examples and for two real
data examples are also provided.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Markov chain Monte Carlo (MCMC) methods (Brooks et al., 2011) are an important class of numerical tools for approxi-
matingmultidimensional integrals over complicated probability distributions in Bayesian computations and in various other
fields. The computational efficiency of MCMC sampling depends on the choice of the proposal distribution. A challenge of
MCMC methods is that in complicated high-dimensional models it is very hard to find a good proposal distribution.

The Gaussian distribution is often used as a proposal distribution due to its theoretical and computational properties.
However, the Gaussian proposal distribution needs a well tuned covariance matrix for optimal acceptance rate and good
mixing of theMarkov chain. If the covariancematrix is too small, too large or has improper correlation structure, theMarkov
chains will be highly positively correlated and hence the estimators will have a large variance. Because manual tuning is la-
borious, several adaptive MCMC algorithms have been suggested (Haario et al., 1999, 2001, 2006; Vihola, 2012; Andrieu
and Thoms, 2008; Roberts and Rosenthal, 2007, 2009; Atchadé and Rosenthal, 2005; Gelman et al., 1996) to update the
covariance matrix during the MCMC run.

In this article, we propose a new adaptive Metropolis algorithm, where we update the covariance matrix of the Gaus-
sian proposal distribution of the Metropolis algorithm using the variational Bayesian adaptive Kalman filter (VB-AKF) pro-
posed by Särkkä and Nummenmaa (2009) and Särkkä and Hartikainen (2013). The idea of the classical Metropolis algorithm
(Haario et al., 1999) is essentially to empirically estimate the covariance of the samples and use this estimate to construct
the proposal distribution. However, as we point out here, such a covariance estimation problem can also be formulated
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as an instance of recursive Bayesian estimation, where the term used for this kind of recursive estimation is Bayesian fil-
tering (Särkkä, 2013). This reinterpretation allows one to construct alternative and potentially more effective adaptation
mechanisms by utilizing the various Bayesian filtering algorithms developed over the years for doing the covariance esti-
mation. The aim of this article is to propose a practical algorithm which is constructed from this underlying idea, prove its
convergence, and test its performance empirically.

The structure of this article is the following: in Section 2 we review the existing adaptive MCMC methods. Section 3 is
dedicated to our new adaptiveMetropolis algorithm. Theoretical validity of the proposed algorithm is shown in Section 4 by
proving a strong law of large numbers. In Section 5, we study the empirical convergence of the method in three simulated
examples and then apply the method to two real data examples.

2. Adaptive Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are widely used algorithms for drawing samples from complicated mul-
tidimensional probability distributions. For example, in Bayesian analysis (Gelman et al., 2013), we are often interested in
computing the posterior expectation of a function g(θ) given the measurements z1, . . . , zM :

E[g(θ) | z1, . . . , zM ] =


Rd

g(θ) p(θ | z1, . . . , zM) dθ. (1)

We can use MCMC methods to approximate the expectation by drawing samples from the posterior distribution
θ1, θ2, . . . , θn ∼ p(θ | z1, . . . , zM), (2)

and then by employing the approximation

E[g(θ) | z1, . . . , zM ] ≈
1
n

n
i=1

g(θi). (3)

A common construction for MCMC uses a random walk that explores the state space through local moves. The most well-
known traditionalMCMCmethod is theMetropolis algorithm. In theMetropolis algorithmwe draw a candidate point θ∗ from
a symmetric proposal distribution q(θ∗ | θ) and use an accept/reject rule to accept or reject the sampled point (Gilks et al.,
1996; Gelman et al., 2013; Brooks et al., 2011).

The efficiency of an MCMC algorithm can be improved by carefully tuning the proposal distribution. Adaptive MCMC
methods are a family of algorithms, which take care of the tuning automatically. This proposal is often chosen to be a Gaus-
sian distribution, inwhich case it is the covariancematrix that needs to be tuned. Under certain settings Gelman et al. (1996)
show that the optimal covariance matrix for an MCMC algorithm with Gaussian proposal is λ Σ, with λ = 2.382/d, where
d is the dimension and Σ is the d × d covariance matrix of the target distribution.

In the adaptive Metropolis (AM) algorithm by Haario et al. (2001), the covariance matrix Σk−1 for the step k is estimated
as follows:

Σk−1 = cov(θ0, θ1, . . . , θk−1) + εI, (4)
where I is the d×d identitymatrix and ε is a small positive valuewhose role is tomake sure thatΣk−1 is not singular (Haario
et al., 1999, 2001). The AM algorithm of Haario et al. (2001) can be summarized as follows:
• Initialize θ0, Σ0.
• For k = 1, 2, 3, . . .

– Sample a candidate point θ∗ from a Gaussian distribution
θ∗ ∼ N(θk−1, λ Σk−1). (5)

– Compute the acceptance probability

αk = min

1,

p(θ∗ | z1, . . . , zM)

p(θk−1 | z1, . . . , zM)


. (6)

– Sample a random variable u from the uniform distribution U(0, 1).
– If u < αk, set θk = θ∗. Otherwise set θk = θk−1.
– Compute the covariance matrix Σk using Eq. (4).
Different adaptive algorithms have been proposed as improved versions of the AMalgorithm above. Good surveys of such

algorithms are found in Andrieu and Thoms (2008) and Liang et al. (2010), where the authors present ways to implement
the algorithms and then show why the algorithms preserve the correct stationary distributions. For instance, apart from
updating the covariance alone, one can adapt λ using the following Robbins–Monro algorithm, which alleviates the problem
of Σk being systematically too large or too small (Andrieu and Thoms, 2008; Atchadé and Fort, 2010; Vihola, 2011):

log(λk) = log(λk−1) + γk (αk − α). (7)
In Eq. (7), α is the target acceptance rate which is commonly set to 0.234 and γk is a gain factor sequence satisfying the
following conditions:

∞
k=1

γk = ∞ and
∞
k=1

γ 1+δ
k < ∞ for some δ ∈ (0, 1].
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