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a b s t r a c t

Good robust estimators can be tuned to combine a high breakdown point and a specified
asymptotic efficiency at a central model. This happens in regression with MM- and
τ -estimators among others. However, the finite-sample efficiency of these estimators can
be much lower than the asymptotic one. To overcome this drawback, an approach is
proposed for parametric models, which is based on a distance between parameters. Given
a robust estimator, the proposed one is obtained by maximizing the likelihood under the
constraint that the distance is less than a given threshold. For the linearmodel with normal
errors, simulations show that the proposed estimator attains a finite-sample efficiency
close to one while improving the robustness of the initial estimator. The same approach
also shows good results in the estimation of multivariate location and scatter.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal work of Huber (1964) and Hampel (1971), one of the main concerns of the research in robust statistics
has been to derive statistical procedures that are simultaneously highly robust andhighly efficient under the assumedmodel.
The efficiency of an estimator is usually measured by the asymptotic efficiency, that is, by the ratio between the asymptotic
variances of the maximum likelihood estimator (henceforth MLE) and of the robust estimator. However if the sample size
n is not very large, this asymptotic efficiency may be quite different from the finite sample size one, defined as the ratio
between themean squared errors (MSE) of the MLE and of the robust estimator, for samples of size n. However, it is obvious
that for practical purposes only the finite sample size efficiency matters.

Consider for example the case of a linearmodelwith normal errors. In this case theMLEof the regression coefficients is the
least squares estimator (LSE). It is well known that this estimator is very sensitive to outliers, and in particular its breakdown
point is zero. To overcome this problem, several estimators combining high asymptotic breakdown point and high efficiency
have been proposed. Yohai (1987) proposed MM-estimators, which have 50% breakdown point and asymptotic efficiency
as close to one as desired. Yohai and Zamar (1988) proposed τ -estimates, which combine the same two properties as
MM-estimators. Gervini and Yohai (2002) proposed regression estimators which simultaneously have 50% breakdown point
and asymptotic efficiency equal to one.

However, as will be seen in Section 2.1, when n is not very large the finite sample efficiency of these estimators may be
much smaller than the asymptotic one. On the other hand, a 50% breakdown point does not guarantee that the estimator is
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highly robust. In fact, this only guarantees that given ε < 0.5 there exists K(ε) such that if the data are contaminated with a
fraction of outliers smaller than ε, the norm of the difference between the estimator and the true value is smaller than K(ε).
However K(ε)may be very large, which makes the estimator unstable under outlier contamination of size ε.

Bondell and Stefanski (2013) proposed a regression estimator with maximum breakdown point and high finite-sample
efficiency. However, as it will be seen in Section 2.1, the price for this efficiency is a serious loss of robustness.

An alternative approach to robust estimation is proposed by Olive andHawkins (2010, 2011); see also Zhang et al. (2012).
Their estimators are consistent and have high breakdown point, but since they are not equivariant, comparisons with them
are difficult.

The purpose of this paper is to present estimators which have a high finite sample size efficiency and robustness even for
small n. Besides, these estimators are highly robust using a robustness criterion better than the breakdown point, namely,
the maximumMSE for a given contamination rate ε.

The procedure to define the proposed estimators is very general andmay be applied to any parametric or semiparametric
model. However in this paper the details are given only to estimate the regression coefficients in a linear model and the
multivariate location and scatter of a random vector.

To define the proposed estimators we need an initial robust estimator, not necessarily with high finite sample efficiency.
Then the estimators are defined by maximizing the likelihood function subject to the estimate being sufficiently close
to the initial one. Doing so we can expect that the resulting estimator will have the maximum possible finite sample
efficiency under the assumed model compatible with proximity to the initial robust estimator. This proximity guarantees
the robustness of the new estimator.

The formulation of our proposal is as follows. Let D be a distance or discrepancy measure between densities. As a
general notation, given a family of distributions with observation vector z, parameter vector θ and density f (z, θ), put
d (θ1, θ2) = D(f (z, θ1) , f (z, θ2)). Let zi, i = 1, . . . , n be i.i.d. observations with distribution f (z, θ), and letθ0 be an initial
robust estimator. Call L (z1, . . . , zn; θ) the likelihood function. Then our proposal is to define an estimatorθ as

θ = argmax
θ

L (z1, . . . , zn; θ) with d
θ0, θ


≤ δ (1)

where δ is an adequately chosen constant thatmay depend on n.We shall call this proposal ‘‘distance-constrainedmaximum
likelihood’ (DCML for short).

Several dissimilarity measures, such as the Hellinger distance, may be employed for this purpose. We shall employ as D
the Kullback–Leibler (KL) divergence, because, as it will be seen, it yields easily manageable results. Therefore the d in (1)
will be

dKL (θ1, θ2) =


∞

−∞

log

f (z, θ1)

f (z, θ2)


f (z, θ1) dz.

In Sections 2 and 3we apply this procedure to the linearmodel and to the estimation ofmultivariate location and scatter,
respectively. In Section 4 the proposed estimators are applied to two data sets. Finally Section 5 summarizes the results.

2. Regression

Consider the family of distributions with z = (x, y), with x ∈ Rp and y ∈ R, satisfying the model y = x′β + σu, where
u ∼ N (0, 1) is independent of x ∈ Rp. Here θ = (β, σ ). Letθ0 =

β0,σ0 be an initial robust estimator of regression and
scale. We will actually consider σ as a nuisance parameter, and therefore we have

dKL

β0,β


=

1
σ 2


β − β0

′ C β − β0


(2)

with C = Exx′.
Here we replace σ with its estimatorσ0. The natural estimator of C would beC = n−1X′X, where X is the n × p matrix

with rows x′

i . Since it is not robust, we will employ a robust version thereof. Put for β ∈ Rp, ri (β) = yi − x′β, the residuals
from β. All ‘‘smooth’’ robust regression estimators, like S-estimators (Rousseeuw and Yohai, 1984), MM- and τ -estimators
satisfy the estimating equations of an M-estimator, which can be written as weighted normal equations, namely

n
i=1

W

ri(β)σ0


xiri (β) = 0, (3)

whereW is a ‘‘weight function’’. Then we define, as in Yohai et al. (1991)

Cw =
1

n
i=1
wi

n
i=1

wixix′

i, (4)
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