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a b s t r a c t

We consider here the problem of testing the effect of a subset of predictors for a regression
model with predictor dimension fixed but ultra high dimensional responses. Because the
response dimension is ultra high, the classical method of likelihood ratio test is no longer
applicable. To solve the problem, we propose a novel solution, which decomposes the
original problem into many testing problems with univariate responses. Subsequently, the
usual residual sum of squares (RSS) type test statistics can be obtained. Those statistics
are then integrated together across different responses to form an overall and powerful
test statistic. Under the null hypothesis, the resulting test statistic is asymptotically
standard normal after some appropriate standardization. Numerical studies are presented
to demonstrate the finite sample performance of the test statistic and a real example about
paid search advertising is analyzed for illustration purpose.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider here a multivariate regression model with predictor dimension fixed but response dimension ultra high.
We are particularly interested in testing statistical significance of a subset of predictors, after controlling for the effect of the
others. Such a problemhas beenwell studied for a standard linear regression problemwith fixed dimensional predictors and
univariate responses (Lehmann, 1998; Shao, 2003). In fact, partial F-test (Ravishanker and Dey, 2001; Chatterjee and Hadi,
2006) has been widely implemented inmany standard statistical softwares (e.g., SAS, S-plus, R, etc.) and extensively used in
practice. Despite its usefulness, this classical method cannot be used to deal with problemswith ultra high dimensional data
(Zhong and Chen, 2011). More specifically, if the predictor dimension is ultra high (i.e., much larger than the sample size),
the classical partial F-test statistic is no longer computable and thus calls for a new testing procedure. To this end, much
efforts have been devoted along this direction in the recent literature; see, for example, Goeman et al. (2004), Goeman et al.
(2006), Goeman et al. (2011), Zhong and Chen (2011), and Lan et al. (2014).

It is remarkable that the aforementioned testing procedures can be useful for high dimensional data with univariate
responses. They are not immediately applicable formultivariate responses. In themeanwhile, the problemof regressionwith
multivariate responses is also an important subject for multivariate data analysis (Anderson, 1984; Johnson and Wichern,
2003). In a classical multivariate regression setup with normally distributed errors, an elegant likelihood ratio test has
been well developed and its associated asymptotic distribution has been well studied, if both the predictor and response
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dimensions are fixed but the sample size goes to infinity (Anderson, 1984; Johnson andWichern, 2003). Unfortunately, such
a method cannot be extended to the situation with ultra high dimensional responses. In that case, the estimated covariance
matrix for the multivariate residual is no longer positive definite. This makes the classical method of likelihood ratio test no
longer applicable. As a result, we are theoretically motivated to fulfil this important gap.

It isworthwhilementioning that thiswork is also empiricallymotivated. Consider for example the real data to be analyzed
in Section 3.2. It is a dataset about paid search advertising. The response of interest is the total number of impressions
generated by one particular keyword, which bids on Baidu, the largest search engine in China. Because the number of
keywords involved is huge, the dimension of themultivariate response is thus ultra high. The predictor of interested here is a
set of six dummy variables representing different days of theweek. The practitioners are eager to knowwhether there exists
a day of the week that has significant effect on certain individual keyword. To this end, the classical univariate F-test can be
used to test for each individual keyword. Nevertheless, by doing so, the family wise Type I error gets inevitably inflated. To
provide certain protection against the overall familywise error, an overall test involving every individual keyword is needed.

More specifically, we propose here a novel testing procedure to test the statistical significance of a subset of regression
coefficients after controlling for the effects of the others. The proposed test is designed for the situation when the predictor
dimension is fixed but the response dimension is ultra high. The proposed new test is simple to compute and asymptotically
standard normal under mild conditions. The rest of this article is organized as follows. The model, notations, and technical
conditions will be introduced in Section 2. The numerical experiments based on both simulated and real dataset are
evaluated in Section 3. Section 4 concludes the article with a short discussion. All the technical details are relegated to
the Appendix.

2. The methodology

2.1. The model and notations

Let (Yi, Xi) be the observation collected from the ith subject with 1 ≤ i ≤ n, where Yi = (Yi1, . . . , Yim)⊤ ∈ Rm is the
m-dimensionalmultivariate responses and Xi = (Xi1, . . . , Xip)

⊤
∈ Rp is the associated p-dimensional predictor. Throughout

the rest of this article, we assume that the predictor dimension p is fixed but the response dimension m is ultra high, i.e.,
m ≫ n. Thismakes ourwork clearly different from the existing literatures,where they all assumem = 1 but p ≫ n (Goeman
et al., 2004, 2006, 2011; Zhong and Chen, 2011; Lan et al., 2014). Without loss of generality, we assume that the component
of Xi has been appropriately sorted, so that it can be decomposed as Xi = (X⊤

ia , X⊤

ib )⊤ ∈ Rp, where Xia = (Xi1, . . . , Xiq)
⊤

∈ Rq

is a set of predictors need to be controlled. In contrast, Xib = (Xi(q+1), . . . , Xip)
⊤

∈ Rp−q collects all the predictors that need
to be tested. To establish the relationship between Yi and Xi, we assume a standard multivariate linear regression model as
follows,

Yi = BXi + εi = BaXia + BbXib + εi, (2.1)

where B = (Ba, Bb) = (β1, . . . , βm)⊤ ∈ Rm×p is the coefficient matrix with βk = (βk1, βk2, . . . , βkp)
⊤

∈ Rp. Furthermore,
Ba = (β1a, . . . , βma)

⊤
∈ Rm×q and Bb = (β1b, . . . , βmb)

⊤
∈ Rm×(p−q), where βka = (βkj : j ≤ q)⊤ ∈ Rq and βkb =

(βkj : q < j ≤ p)⊤ ∈ Rp−q for each 1 ≤ k ≤ m. In addition, εi = (εi1, . . . , εim)⊤ ∈ Rm is the residual vector and εik is the
random noise associated with the k-th response. We are then interested in testing the following statistical hypotheses

H0 : Bb = 0 vs. H1 : Bb ≠ 0. (2.2)

Intuitively, under the null hypothesis of (2.2), Xib should be irrelevant for Yi after controlling for the effect of Xia.

2.2. Likelihood ratio test

For illustration purpose, we first consider the situation withm ≪ n. Assume that εi ∈ Rm follows a multivariate normal
distribution with mean 0 and covariance matrix Σ = (σk1k2) ∈ Rm×m. Then the negative two times log-likelihood function
can be expressed as

L(B, Σ) =

n
i=1


(Yi − BXi)

⊤Σ−1(Yi − BXi)


+ n log |Σ |,

where the constants independent of B and Σ are omitted. This leads to the following maximum likelihood estimator (MLE)
as B̂⊤

= (n−1n
i=1 XiX⊤

i )−1(n−1n
i=1 XiY⊤

i ) and Σ̂ = n−1n
i=1(Yi − B̂Xi)(Yi − B̂Xi)

⊤. Subsequently, the corresponding
minimum negative log-likelihood function is given by 2−1n log |Σ̂ |. Similarly, under the null hypothesis of (2.2) that Bb = 0,
the MLE for Ba and Σ are given by B̂⊤

a = (n−1n
i=1 XiaX⊤

ia )−1(n−1n
i=1 XiaY⊤

i ) and Σ̂a = n−1n
i=1(Yi − B̂aXia)(Yi − B̂aXia)

⊤,
respectively. The corresponding minimum negative likelihood, under the null hypothesis, becomes ℓ0 = 2−1n log |Σ̂a|.
Accordingly, the likelihood ratio test statistic becomes −n log(|Σ̂ |/|Σ̂a|). The LR test statistic is then adjusted by −{n− p−

0.5(m − p + q)} log(|Σ̂ |/|Σ̂a|), which is asymptotically distributed as a chi-squared distribution with m(p − q) degrees of
freedom (Anderson, 1984; Johnson and Wichern, 2003).
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