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a b s t r a c t

Extraction of curvilinear structures from noisy data is an essential task inmany application
fields such as data analysis, pattern recognition andmachine vision. The proposed approach
assumes a randomprocess inwhich the samples are obtained from a generativemodel. The
model specifies a set of generating functions describing curvilinear structures as well as
sampling noise andbackground clutter. It is shown that ridge curves of themarginal density
induced by the model can be used to estimate the generating functions. Given a Gaussian
kernel density estimate for the marginal density, ridge curves of the density estimate
are parametrized as the solution to a differential equation. Finally, a predictor–corrector
algorithm for tracing the ridge curve set of such a density estimate is developed. Efficiency
and robustness of the algorithm are demonstrated by numerical experiments on synthetic
datasets as well as observational datasets from seismology and cosmology.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Detection and extraction of curvilinear structures from noisy data is an essential task in many practical applications: ex-
traction of blood vessels that form filament- and tree-like structures is an important task in medical imaging (e.g. Baş, 2011;
Flasque et al., 2001; Hoover et al., 2000); in cosmological data, stars and galaxies form filament-like patterns (e.g. Jang, 2006;
Novikov et al., 2006; Sousbie et al., 2008), and in astronomy, detection of solar flares involves finding filaments from solar
images (e.g. Shih and Kowalski, 2003). Identification of curvilinear structures from noisy data with background clutter is a
typical task in remote sensing (e.g. Banfield and Raftery, 1992; Martínez and Ludeña, 2011) and seismology (e.g. Dasgupta
and Raftery, 1998; Stanford and Raftery, 2000). Other applications, where fitting curves to noisy data is an important task, in-
clude freeway trafficmodeling (e.g. Chen et al., 2004; Einbeck and Dwyer, 2011), processmonitoring (e.g. Dong andMcAvoy,
1996), path estimation from GPS tracks (e.g. Brunsdon, 2007) and shape analysis in computer graphics (e.g. Su et al., 2013).

One of the most well-known approaches to extract curvilinear structures from noisy data is to use the so-called principal
curves. This approach dates back to Hastie (1984) and Hastie and Stuetzle (1989). A principal curve is defined as a curve
passing through the ‘‘middle’’ of the data in a certain sense. Further variations of the principal curve approach have been
developed, for instance, by Kégl et al. (2000), Kégl and Krzyzak (2002) and Tibshirani (1992). All of these approaches,
however, make rather restrictive assumptions. For instance, they attempt to fit a single curve with no self-intersections, or
as the method of Kégl and Krzyzak (2002), require complicated parameter adjustments when self-intersecting or multiple
curves are sought from the data.
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In order to overcome the limitations of the original principal curve definition, locally defined variants of a principal
curve have been proposed (e.g. Delicado, 2001; Delicado and Huerta, 2003; Einbeck et al., 2005; Genovese et al., 2009, 2012;
Ozertem and Erdogmus, 2011). This paper extends an earlier paper by Pulkkinen et al. (2014) refining the ideas presented
by Ozertem and Erdogmus (2011). The key idea in these two papers is to estimate the probability density from given data
and extract curvilinear structures from the data from ridge curves of the density estimate. Since the definition of a ridge is
based only on local derivative information, this approach does not suffer from the limitations of the earlier approaches. For
the projection of a sample point onto a ridge, a subspace-constrained variant of the standardmean-shift method (e.g. Cheng,
1995; Comaniciu and Meer, 2002) was proposed by Ozertem and Erdogmus (2011). An improved Newton-based method
for this purpose was developed by Pulkkinen et al. (2014). Recently, some extensions of ridge-based methods have been
made for the more difficult problem of parametrization of principal curves by iteratively tracing ridge curves of the density
(e.g. Baş and Erdogmus, 2011; Baş, 2011; Baş et al., 2012).

A generative model for describing a random process that generates a noisy point set containing curvilinear structures was
proposedby Pulkkinen et al. (2014). In themodel, the data points are assumed to be sampled froma set of generating functions
with additive noise. In this paper the model is extended to include background clutter being often present in practical
applications. Furthermore, it is demonstrated by Pulkkinen et al. (2014) that ridge curves of the marginal density induced
by the model can be used to estimate the underlying generating functions. Differently to the earlier local principal curve
approaches, where no statistical assumptions are made about the data-generating process, the proposed model provides a
more statistically oriented approach and a tool for assessing the bias of the principal curve estimate.

For a computational implementation of the ridge curve approach, we consider nonparametric estimation of the marginal
density by using Gaussian kernels (e.g. Scott, 1992). This approach allows to estimate the density directly from the samples
with no prior knowledge on the data-generating process, which is often the case in real-world tasks. Based on the recent
developments inmultivariate density estimation (e.g. Duong, 2007), we also discuss how to automatically choose the kernel
bandwidth since this step is crucial for the practical applicability of the method.

A major contribution of this paper is the development of a computationally efficient and robust algorithm for tracing
ridge curves of a Gaussian kernel density estimate. Adapting the theory of gradient extremals from theoretical chemistry
(e.g. Hoffman et al., 1986), it is shown that a ridge curve can be parametrized by tracing a solution curve of a differential
equation. A predictor–corrector algorithm is developed for this purpose. The algorithm first finds a set of modes (maxima)
of the density, and starting from each mode iteratively traces the ridge curve passing through it. Since the choice of the
mode-finding and correctormethods largely determines the performance of the algorithm, the trust region Newtonmethod
developed by Pulkkinen et al. (2014) is utilized for these purposes. This choice is motivated by the results of Pulkkinen et al.
(2014) showing that the Newton-based method is not only more efficient than the mean-shift method and its subspace-
constrained variant but also converges to a ridge point or mode under mild assumptions.

The main difficulty in tracing ridge curves is that they can have a very complex structure. Differently to the earlier ridge-
based principal curvemethods by Baş et al., where this issue was not considered in detail, a rigorous treatment for detection
of different types of singular points along a ridge curve is given. The analysis is based on the theory of ridge curves from
digital image processing (e.g. Eberly, 1996). In addition, we discuss some strategies for choosing the starting points. These
considerations arise when the input data has multiple, possibly intersecting curvilinear structures. The proposed approach
is also more robust than the one by Einbeck et al. (2005), where such issues were not rigorously treated, or the heuristic
graph-based approach by Delicado and Huerta (2003).

The remaining part of this paper is organized as follows. In Section 2 we describe the generative model and discuss how
to use ridge curves to estimate the generating functions. Sections 3 and 4 are devoted to the development of the ridge
tracing algorithm. In Section 5 we demonstrate the performance and reliability of the proposed algorithm on synthetically
generated point sets as well as two observational datasets from seismology and cosmology. Finally, Section 6 summarizes
this paper with concluding remarks.

2. Probabilistic model and density estimation

In this sectionwe recall the generativemodel fromPulkkinen et al. (2014) and extend it to include background clutter. The
model describes a process for generating a noisy point set containing curvilinear structures (related models have also been
considered by Genovese et al., 2009, 2012 and Tibshirani, 1992). Since our aim is to make as few parametric assumptions
on the data-generating model as possible, we consider the marginal density induced by the model. For estimation of
the curvilinear structures from the marginal density, we define the concept of a ridge curve. Finally, for a computational
implementation of this approach we consider nonparametric estimation of the marginal density by using Gaussian kernels.

2.1. The model

In the model, the sample points fall into two distinct categories. A sample either belongs to some curvilinear structure,
that we call a filament, or is background clutter. The type of a sample point is modeled by the random variable

T =

1, if the sample belongs to a filament,
0, if the sample is background clutter
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