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a b s t r a c t

Nonparametric methods for matched pairs with data missing completely at random are
considered. It is not assumed that the observations are coming from distribution functions
belonging to a certain parametric or semi-parametric family. In particular, the distributions
can have different shapes under the null hypothesis. Hence, the so-called nonparametric
Behrens–Fisher problem for matched pairs with missing data is considered. Moreover, a
new approach for confidence intervals for nonparametric effects is presented. In particular,
no restriction on the ratio of the number of complete and incomplete cases is required to
derive the asymptotic results. Simulations show that for arbitrary settings of complete data
and missing values, the resulting confidence intervals maintain the pre-assigned coverage
probability quite accurately. Regarding the power, none of the proposed tests is uniformly
superior to the other. A real data set illustrates the application.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In many sociological, psychological or medical studies, the subjects are observed repeatedly under different conditions,
which are called treatments in the terminology of experimental designs. Hence, the repeatedmeasurements on each subject
may be dependent and therefore, statistics must be derivedwhich take the correlation of the data into account. The simplest
repeated measures design occurs if the subjects are observed twice, which is called a matched-pairs design. Moreover, the
special problem ofmissing values is an additional difficulty arising in studies with repeated measures. Missing values occur
frequently in practice and therefore appropriate statistical procedures must be derived. The key question for analyses with
missing data is that of under what circumstances, if any, do the analyses that we would perform lead to valid answers. The
answers depend on the missing value mechanism, which is the probability that a set of values are missing given the values
taken by the observed and missing observations. Data are said to bemissing completely at random (MCAR) if the probability
of an observation being missing does not depend on observed or unobserved measurements. If the missingness mechanism
does not depend on the unobserved data, the observations are said to be missing at random (MAR). In practice, however,
the missing value mechanism is rarely known. For a detailed overview of missing value mechanisms, we refer the reader to
the textbook by Little and Rubin (1987). With respect to the missing value mechanisms, different test procedures including
complete pairs, all available cases and (multiple-)imputation methods are extensively discussed in the literature (see, e.g.,
Akritas et al., 2002 and Akritas et al., 2006). A complete-pairs statistic can only be applied when data are MCAR but it does
not use all the information from the data. All-available test procedures and imputation methods use all the observed data.
Hereby, all-available approachesmust be able to dealwith strongly imbalanced sample sizes of the complete and incomplete
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data, whereas multiple-imputation methods estimate the unobserved data, and variance estimation of the imputed data
becomes an issue. Therefore, multiple-imputation methods can only be applied when sample sizes are very large (see, e.g.,
Akritas et al., 2002, Section 5). In this paper, we only consider test procedures based on all available data and we will derive
inference methods for small sample sizes.

For the case of MCAR or that of MAR, the analysis of matched pairs with missing values using parametric or semi-
parametric mixed models is well developed and is well described in several textbooks (Diggle et al., 1994; Lindsey, 1993;
Verbeke and Molenberghs, 2000). All of these procedures are based on specific model assumptions, e.g. the existence
of an expectation or homogeneous variances. In practice, model assumptions can rarely be verified. If the data do not
reflect the assumptions, e.g. skewed distributions, outliers or small sample sizes, the statistical procedures may result
in obtaining wrong conclusions. For the special case of dichotomous data, Lin et al. (2009) propose a Bayesian approach
under the assumption of MCAR. For the analysis of general non-normal data, in particular discrete data or even ordered
categorical data, rank-based nonparametric methods are preferred. Let Xk = (∆1kX1k,∆2kX2k), k = 1, . . . , n, denote
paired observations with marginal distributions Xik ∼ Fi, i = 1, 2. Here, ∆ik denotes an indicator with ∆ik = 1, 0 if Xik
is observed or non-observed, respectively. Further let nc =

n
k=1∆1k∆2k denote the number of the complete cases and let

ng =
n

k=1∆gk(1 − ∆sk), s ≠ g , denote the number of incomplete cases in sample g, g = 1, 2. Brunner and Puri (1996)
discuss nonparametric ranking methods for the hypothesis HF

0 : F1 = F2 formulated in terms of the marginal distribution
functions under the assumption of MCAR. Akritas et al. (2002) propose a new ranking approach for HF

0 : F1 = F2 under
the assumption of MAR. They overcome the perception that ranking methods can only be applied when data are MCAR.
Gao (2007) extends the nonparametric imputation approach by Akritas et al. (2002) to the two-factor mixed model with
MCAR data. All of these procedures are based on the asymptotic normality of estimates of so-called relative marginal effects
p = P(X11 ≤ X22) (continuous distributions) under the hypothesis HF

0 . For independent samples, p is estimated by the
numerator of the Wilcoxon–Mann–Whitney test (Mann andWhitney, 1947). Browne (2010) emphasizes that in the case of
(asymptotic) normality, p can help to express t-test results in terms of differences between individuals randomly chosen
from the two populations, rather than in terms of differences in populationmeans. In the case of ordinal data, p is also called
the ordinal effect size measure (Ryu, 2008; Ryu and Agresti, 2008). All of these ranking procedures for testing the hypothesis
HF

0 are not consistent with respect to alternatives of the formHF
1 : F1 ≠ F2. Additionally, they are limited to testing problems

and cannot be used to construct confidence intervals for the effect size measure. Therefore, test procedures which test the
hypothesisHp

0 : p =
1
2 in terms of the treatment effect aremore appropriate. We focus on the interpretation of an effect size

instead of a probability (p-value), following the ICH-E9 (ICH, 1998) recommendation for randomized clinical trials: Estimates
of treatment effects should be accompanied by confidence intervals, whenever possible [. . . ].

Brunner and Neumann (1984) propose a nonparametric approach for testing Hp
0 for continuous MCAR data, which was

generalized to arbitrary distributions by Brunner and Puri (1996). Simulation studies show that the test statistics tend to not
maintain the pre-assigned type-I error level for small sample sizes or in unbalanced sample size allocations. In this work, we
extend the idea of Konietschke and Brunner (2009), who propose weighted rank estimators for relative effects in factorial
diagnostic trialswith clustered data, toMCAR data and derive test procedures forHF

0 ,H
p
0 and confidence intervals for p under

the assumption that the sums nc + ng of the complete and the incomplete cases, for g = 1, 2, tend to infinity. This includes
the particular cases in

Assumption 1.1.
1. nc → ∞, n1, n2 ≤ M < ∞, or
2. nc → ∞, n1 → ∞, n2 ≤ M < ∞, or
3. nc → ∞, n1 → ∞, n2 → ∞, or
4. nc ≤ Nc, n1 → ∞, n2 → ∞,

which are the most practice-oriented patterns of sample sizes. All previous procedures are not valid for all the four cases
listed in Assumption 1.1. Simulation studies show that the type-I error level is controlled quite accurately even for small
sample sizes. The approach is purely nonparametric and allows one to formulate hypotheses in terms of the effect size
measure p. Hence, the so-called nonparametric Behrens–Fisher problem (see, e.g., Brunner and Munzel, 2000 and Munzel,
1999b) for matched pairs with missing values will be considered. To the best of our knowledge, there is no other unified
approach in the literature which can lead to confidence intervals for p in this general setup. A real data set illustrates the
application of the new methods to a clinical trial involving ordered categorical data.

The paper is organized as follows. To motivate the ideas, a real data example is discussed in Section 2. In Section 3,
the statistical model and the nonparametric effect size measure are introduced. Section 4 presents the new estimation
approach for p in matched pairs with missing data, and the asymptotic normality of the estimator is shown. The estimation
of the variance is explained in Section 5. New test procedures and confidence intervals under the assumption of MCAR are
provided in Section 6. Simulation results will be presented in Section 7. The paper closes with the statistical analysis of the
example in Section 8 andwith a discussion of themethods proposed in Section 9. Technical proofs are given in the Appendix.

2. A motivating example: migraine sufferers

As an example, we consider themigraine trial published by Kostecki-Dillon et al. (1999), whichwas investigated in detail
by Gao (2007).
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