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a b s t r a c t

Risk factor models in clinical epidemiology are important for identifying individuals at
high risk of poor health outcomes and for guiding intervention strategies to reduce risk.
Such models are often based on generalised linear models (GLM) with a multiplicative
risk, rate or odds assumption. However, in practice some risk factors may act additively,
in which case the use of a multiplicative model will lead to spurious interactions
among risk factors. Computational methodology is developed for fitting non-GLM Poisson
regression models that have an additive component with multiplicative stratification.
These stratified additive Poisson models, which can also be applied to binomial
data, provide an additive–multiplicative framework that allows greater flexibility than
multiplicative models. Non-negativity constraints and high dimensionality are dealt with
using an Expectation-Conditional-Maximisation (ECM) algorithm that oscillates between
the multiplicative and additive components of the model. As well as providing highly
stable convergence properties in a potentially unstable setting, the method allows flexible
modelling features such as unspecified isotonic regression functions. The methodology
is illustrated with an analysis of heart attack mortality in a large clinical trial, and it is
found that the combination of additive and multiplicative components allows a more
parsimonious risk factor model by removing the need for interaction terms. R code to
implement the method is provided as supplementary material.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

An important area of clinical epidemiology is the development of statistical models that use an individual’s risk factor
profile to quantify their likelihood of experiencing a particular disease event (Harrell, 2001; Steyerberg, 2009). Such models
are key to identifying high risk individuals and for understanding how best to intervene to reduce risk. The occurrence of
disease events is often measured using either the rate of events per unit of time, or the risk (probability) of an event within
a specific time period. Thus, a natural way to develop risk factor models is to fit a Poisson or binomial generalised linear
model (GLM) to data on the number of disease events observed within each combination of the available risk factors.

The most common GLMs used in risk factor modelling are based on multiplicative assumptions about the risk or rate of
disease. For binomial data, logistic regression has traditionally been used and corresponds to amultiplicative assumption on
the risk odds. However, since risk ratios are usually more interpretable than odds ratios, the log link binomial GLM is now
often preferred to the logistic model, and corresponds to a multiplicative risk assumption (McNutt et al., 2003; Speigelman
and Hertzmark, 2005; Lumley et al., 2006). For Poisson data, log linear regression is most common and corresponds to a
multiplicative rate assumption.
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While multiplicative models provide the mainstay of risk factor modelling, in practice it is possible that risk factors have
an additive relationship with the occurrence of disease events. In this case rate differences and risk differences are better
measures of disease occurrence and identity link Poisson or binomial models are often used, sometimes with simplifying
approximations (Speigelman and Hertzmark, 2005; Cheung, 2007). While such additivemodels are less common in practice
than multiplicative models, partly due to the potential for computational instability, they have been used effectively in real
applications (Grotvedt et al., 2008; Gao et al., 2009).

Since both additive and multiplicative risk factor models have relevance in practice, a natural extension of these
models is an additive–multiplicative model. This allows some risk factors to contribute to the model in an additive way,
while others can contribute multiplicatively. However, since additive Poisson and binomial GLMs can be numerically
unstable, additive–multiplicative models tend to inherit the numerical instability of their additive component. For additive
binomial models the most common way of dealing with this instability is to use the additive Poisson model as a ‘‘working
model’’ which provides unbiased estimators whose standard errors can be estimated using the so-called robust sandwich
estimator (Hardin, 2003; Speigelman and Hertzmark, 2005). If the additive Poisson model is numerically unstable then
recent methodology developed by Marschner (2010) can be used for reliable fitting of the model. Here we generalise this
methodology to additive Poisson models having multiplicative stratification, that is, stratified additive Poisson models.

Our computations use the Expectation-Conditional-Maximisation (ECM) algorithm (Meng and Rubin, 1993; McLachlan
and Krishnan, 2008) and involve oscillating between the additive and multiplicative components of the model. This ECM
algorithm is applied repeatedly to maximise the Poisson log-likelihood function within a sequence of subsets of the
parameter space, after which the maximum likelihood estimate (MLE) is determined from among the subset maxima. The
resulting method is a numerically stable way to fit additive–multiplicative models, in both Poisson and binomial contexts,
and remains reliable in high dimensions while accommodating flexible modelling features such as unspecified isotonic
regression functions. The supplementary material for this paper includes source code to implement the method in R (R
Development Core Team, 2011).

2. Motivating clinical application

As motivation for additive and additive–multiplicative risk factor models, we consider data on 16,949 individuals
who experienced a heart attack (acute myocardial infarction) and were enrolled in the ASSENT-2 clinical trial (ASSENT-
2 Investigators, 1999). This study randomised patients to one of two interventions within 6 hours of their heart attack (the
drugs tenecteplase and alteplase), and recorded a primary outcome of death within 30 days of the heart attack. While the
primary purpose of the study was to undertake a randomised treatment comparison, large-scale clinical cohorts such as
this provide a rich source of data for the development of risk factor models that can be used to stratify heart attack cases
according to their risk of mortality. In the past, risk factor models for mortality following heart attack have invariably been
developed using a multiplicative assumption for the risk or the risk odds. A recurring feature of such models is the presence
of interactions between risk factors, most notably between the patient’s age and the severity of heart failure (Lee et al.,
1995; O’Connell and Hudson, 2009). This interaction is in the direction of diminishing age-specific risk ratio (or odds ratio)
for increasing severity. Similar interactions have also been observed in other cardiovascular contexts where multiplicative
models are used, as discussed by Marschner et al. (2007).

While it is plausible that there is genuine effect modification occurring in cardiovascular disease, another possible
explanation is that the interactions are an artefact of the multiplicative assumption. For example, if mortality following
heart attack actually depends additively on age and severity, then fitting amultiplicative model would lead to an artefactual
interaction in the direction described above. This can be seen by considering the behaviour of the risk ratio when the risk is
an additive function of age and severity. In that case the risk ratio for age a1 compared to age a2 < a1, for a given severity
level s, is

RR(a1, a2; s) =
f (a1) + g(s)
f (a2) + g(s)

,

where f and g are some non-decreasing functions. This age-specific risk ratio decreases to 1 as the severity level increases,
which is consistent with the direction of the interaction observed empirically when using multiplicative models. This
suggests a possible alternative explanation, that the risk is additive rather than multiplicative.

Descriptive analyses of the ASSENT-2 data seem to support this explanation. Fig. 1 plots the proportion of deaths by age
and severity. Here, the severity of heart failure is measured using the standard four level Killip classification, with the third
and fourth levels combined due to small numbers in the latter. The results show that while there is a strong interaction
on the multiplicative (log) scale there is effectively no interaction on the additive scale. In particular, the risk difference
between the oldest and youngest age groups is highly stable over the three severity groups, ranging from 14.4% to 15.7%.
In contrast, there is considerable variation in the risk ratio of the oldest age group compared to the youngest, ranging from
10.4 in the lowest severity group to 1.5 in the highest severity group.

The above descriptive analyses suggest that an additive risk model might be preferable to a multiplicative risk model.
However, there are other potential risk factors to consider, including the patient’s baseline characteristics, the type of
treatment received and the context in which the patient was treated (e.g. the hospital, country or region). Such risk factors
could reasonably be expected to act multiplicatively, even in the presence of additive effects from other risk factors. This
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