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a b s t r a c t

The well known latent variable representation of the Bayesian probit regression model
due to Albert and Chib (1993) allows model fitting to be performed using a simple
Gibbs sampler. In addition, various types of dependence among categorical outcomes not
explained by covariate information can be accommodated in a straightforward manner
as a result of this latent variable representation of the model. One example of this is
the spatial probit regression model for spatially-referenced categorical outcomes. In this
setting, commonly used covariance structures for describing residual spatial dependence
in the normal linear model setting can be imbedded into the probit regression model.
Capturing spatial dependence in thisway, however, can negatively impact the performance
of MCMC model-fitting algorithms, particularly in terms of mixing and sensitivity to
starting values. To address these computational issues, we demonstrate how the non-
identifiable spatial variance parameter can be used to create data augmentation MCMC
algorithms. We compare the performance of several non-collapsed and partially collapsed
data augmentation MCMC algorithms through a simulation study and an analysis of land
cover data.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

There has been a recent emphasis in the spatial statistics literature on the development of methods that accommodate
large data sets. In the Bayesian setting, these methods include dimension reduction techniques (e.g., Higdon, 2002; Xu et al.,
2005; Calder, 2007; Banerjee et al., 2008), integrated nested Laplacian approximations (Rue et al., 2009), and covariance
tapering (see recent work by Shaby and Ruppert, in press, for a Bayesian treatment of this technique). In this paper, instead
of focusing on model adjustments to accommodate large data sets or approximations to full Bayesian inference procedures,
we investigate strategies for efficient Markov chain Monte Carlo (MCMC) algorithms for a particular class of spatial probit
regressionmodels. In particular,we introduce various data augmentation strategies for the Bayesian probit regressionmodel
for spatially-referenced categorical response variables. Such data frequently arise, for example, in analyses of satellite-
derived land cover data, where measured surface reflectances are classified into one of several distinct categories (e.g.,
forest, agriculture, or urban). Using such data, researchers may want to better understand the economic, social, political,
and demographic factors associated with observed land cover patterns while accounting for (residual) spatial dependence.
While the MCMC strategies discussed here are not necessarily designed to overcome computational challenges associated
with massive data sets, in high dimensional settings having efficient algorithms is clearly desirable.

Data augmentation/latent variable methods have been widely recognized for facilitating model fitting in the Bayesian
probit regression model. First proposed by Albert and Chib (1993) for independent binary and multi-category data, the
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latent variable representation of the Bayesian probit regression model allows model fitting to be performed using a simple
Gibbs sampler and, for more than two categories, also allows the so-called assumption of irrelevant alternatives required
by the logistic regression model to be relaxed (Hausman and Wise, 1978). To improve the efficiency of the Gibbs sampler
in this setting, Imai and van Dyk (2005) propose introducing a working parameter (defined in Section 3.1) into the model
and compare various data augmentation strategies resulting from different treatments of the working parameter. We build
on this work by investigating the efficiency of modified and extended versions of these algorithms for the spatial probit
regression model, focusing on the special case of binary response variables. These algorithms include the one previously
proposed by De Oliveira (2000), which we discuss further in Section 3.1.

Before describing our proposed methodology, we note that there are a large number of alternatives to the spatial probit
regression model for analyzing spatially-referenced binary data. Indicator kriging methods (Switzer, 1977; Journel, 1983)
have been proposed in the literature, but have been widely criticized due to their weak theoretical predictive properties
(Cressie, 1993). Other kriging methods (i.e., best linear unbiased spatial prediction) for binary data include disjunctive and
probability kriging (Cressie, 1993). Model-based approaches that directly specify the spatial dependence among binary
response variables are the autologistic model (Besag, 1972) and the spatial generalized linear model (GLM; McCullagh and
Nelder, 1989 and Albert and McShane, 1995). The spatial probit regression model featured in this paper is a particular type
of spatial GLM. Alternatively, spatial generalized linear mixed models (GLMMs) capture spatial dependence through the
introduction of an underlying Gaussian process (Diggle et al., 1998). For a review of various versions of spatial logistic
GLMMs, as well as a discussion of the specification of spatial dependence in this class of models, we refer the reader to
Paciorek (2007).

The remainder of this paper is organized as follows. In Section 2, we review the Albert and Chib (1993) data augmentation
strategy for the Bayesian probit regression model. We then discuss the extension of this methodology to the spatially-
dependent setting. In Section 3 we propose three MCMC strategies for sampling from the Bayesian spatial probit regression
model.We compare ourmodel-fitting algorithms through a simulation study in Section4 and through an analysis of satellite-
derived land cover observations over Southeast Asia in Section 5. The paper concludes with a summary of our findings and
a discussion of future research possibilities in Section 6.

2. The Bayesian probit regression model

2.1. Albert and Chib’s data augmentation strategy

Consider {Yi, xi : i = 1, . . . , n}, a collection of n binary response variables Yi and corresponding k×1 vectors of covariates
xi. The probit GLM relating the covariates to the binary response assumes that the Yi are conditionally independent given a
k × 1 vector of regression coefficients β and can be written as

Yi|β ∼ Bernoulli(pi)
Φ−1(pi) = x′

iβ,
(1)

where Φ−1(·) denotes the inverse standard normal cumulative distribution function. In the Bayesian setting, a prior
distribution must be specified for the unknown parameter β. Unlike the normal linear regression model where the normal
distribution is a conjugate prior for the regression coefficients, a conjugate prior is not available for β in (1). Thus, inference
on β typically requires deterministic integration, which is not feasible if k is large, or a simulation-based approach such as
MCMC.

In order to facilitate the use of the Gibbs sampler, a particular class ofMCMC algorithms, in the Bayesian probit regression
model, Albert and Chib (1993) propose the following data augmentation representation of the model. They introduce a
collection of latent variables Z̃ = (Z̃1, . . . , Z̃n)′ and take

Yi =


1, if Z̃i > 0
0, if Z̃i ≤ 0

(2)

where

Z̃ ∼ N(Xβ̃, σ 2In), (3)
X = (x1, . . . , xn)′ is an n × k matrix of covariates, In is the n × n identity matrix, and σ 2 is a variance parameter. (The
˜ notation used here distinguishes identifiable and non-identifiable parameters, and we follow this notational convention
to aid our discussion of data augmentation strategies in Section 3.) Taking σ 2

= 1, setting Zi = Z̃i/σ and β = β̃/σ , and
integrating out the Zi, it is straightforward to show that Albert and Chib’s model specification is equivalent to the probit GLM
given in (1). Introducing the latent Z̃i and taking the prior on β to be N


mβ , Cβ


facilitates model fitting via the following

Gibbs sampler:
Step 1: sample Z|Y,β, σ 2

= 1
Step 2: sample β|Z, Y, σ 2

= 1.

Each of these steps involves drawing from known distributions from which sampling is easily implemented; see Albert and
Chib (1993) for details.
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