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a b s t r a c t

It is shown how to choose the smoothing parameter in image denoising by a statistical
multiresolution criterion, both globally and locally. Using inhomogeneous diffusion and
total variation regularization as examples for localized regularization schemes, an efficient
method for locally adaptive image denoising is presented. As expected, the smoothing
parameter serves as an edge detector in this framework. Numerical examples togetherwith
applications in confocal microscopy illustrate the usefulness of the approach.
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1. Introduction

Image denoising is one of the main tasks in image analysis, as documented by numerous articles and books published on
the subject, see for example Scherzer et al. (2009), Buades et al. (2005b) and Aubert and Kornprobst (2002). Statisticians
have made many contributions to this area: using probabilistic models Bayesian methods were among the first with a
statistical perspective on the subject, see Geman and Geman (1984), Besag (1986), Winkler (2003), and Thon et al. (2012).
From a frequentist point of view image denoising becomes a smoothing or reconstruction problem, see for example Hall
and Titterington (1986) and Polzehl and Spokoiny (2000, 2003) as well as Korostelev and Tsybakov (1993). The fact that
many images feature sharp edges (see for example Chu et al. (1998) and Donoho (1999)) prompted a generalization of the
well-established smoothing techniques in one-dimensional jump detection, see Ogden and Parzen (1996) and Qiu (2005,
2007). For a unifying framework for many popular numerical and statistical denoising techniques see Mrázek et al. (2006)
and Charles and Rasson (2003) for the case of Poisson data.

Put simply, statistical image denoising amounts to reconstructing a noiseless image f given a noisy image y. Usually it is
assumed that the noise ϵ is additive, y = f + ϵ. In the following, it will be further assumed that the noise is generated at
random: more specifically, for pixels (i, j)

yij = fij + ϵij, (1)
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Fig. 1. (a) 256 × 256 pixel test image f taking values in [0, 5]; the dashed line indicates row 64 shown in detail in Fig. 8. (b) Simulated data y with noise
level σ = 1.

with Gaussian white noise ϵij, that is the ϵij are independently and identically distributed Gaussian random variables with
zero mean and variance σ 2,

ϵij
i.i.d
∼ N (0, σ 2). (2)

Furthermore, it will be assumed that the value at each pixel is a real number, yij, fij, ϵij ∈ R. This models a grey-scale image,
although in practice grey levels are usually restricted to a finite number of discrete values, in particular to integers between 0
and 255. In many applications, a Gaussian assumption on the noise is therefore not very plausible and other noise processes
would be more appropriate. Nonetheless, for the sake of simplicity the basic ideas will be expounded under the Gaussian
assumption. Extensions to othermodels are briefly discussed at the end of Section 3. Itmay benoted that for awell-calibrated
image ywith a reasonable range of possible values, the Gaussian assumption is not very crucial as long as the errors are i.i.d.,
symmetric and do not have heavy tails.

Fig. 1 shows an artificial example where f exhibits varying degrees of smoothness (left), and Gaussian white noise has
been added to obtain the data y (right). The assumption about the noise can then be exploited in order to distinguish between
the ‘true’, noiseless image f and the noise ϵ as demonstrated in the following sections.

Clearly, this is impossible unless assumptions are made about f , for example that it varies slowly from pixel to pixel. In
order to be able to formulate such ‘smoothness’ assumptions more precisely, let (with a slight abuse of notation) fij denote
the values of a function f on a regular grid, that is f : [0, 1]2 → R with fij = f ( i

n ,
j
n ) where i, j ∈ {1, . . . , n} is a square grid

chosen for ease of notation with xij = ( i
n ,

j
n ). The analysis can be extended all to rectangular grids, to higher dimensions,

and to non-uniform sampling schemes through the use of finite elements (Ern and Guermond, 2004). Within this model f
can be viewed as a function and ‘smoothness’ can be defined more rigorously to mean that f belongs to some function class,
for example that f lies in a Sobolev or Besov ball, or that f has bounded variation, see Korostelev and Tsybakov (1993).

Image denoising techniques like the ones discussed in Section 2 generally require the choice of some smoothing or
regularization parameter a which determines how much smoothing is to be applied. This parameter might be localized,
allowing for different amounts of smoothing to be applied to different parts of the image; the regularization parameter
then becomes a function a : [0, 1]2 → R. This enables the user to adapt to differing levels of smoothness across the image.
The reconstruction or denoised image f̂ consequently depends on the values of the smoothness parameter. A purely data-
driven and generally applicable way to choose a will be described in the following. It will be illustrated using two specific
denoising techniques, namely linear diffusion and TV penalization. It is to be stressed, however, that the approach is in
principle applicable to any regularization technique which depends on properly choosing a regularization parameter, the
latter possibly being a function as described above.

The main idea can be summarized as follows. Consider the residuals rij = yij − f̂ij which depend on the smoothness
parameter a. If the image is oversmoothed, some structures which are present in f will be smoothed away, but these
structures will then be visible in the residuals. In the case of a perfect reconstruction f̂ = f , however, the residuals form
white noise, see (1). One possible way to decide whether the imagewas excessively smoothed is therefore to check whether
the residuals look like white noise — if there is still some structure left in the residuals then the image must have been
smoothed too much. This idea is at the heart of statistical methods for automatically selecting the regularization parameter.

The proposed key ingredient for choosing the smoothness parameter a is a statistical multiresolution criterion to be
introduced in Section 3. An important feature of this criterion is that it not only detects whether the residuals deviate from
white noise but also localizes the deviations. This then allows for a locally adaptive choice of a. In Section 4 an algorithm for
a data-driven selection of a is given. Numerical details and results are given in Section 5, together with an example from
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