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a b s t r a c t

In some applications of survival analysis with covariates, the commonly used semipara-
metric assumptions (e.g., proportional hazards) may turn out to be stringent and unre-
alistic, particularly when there is scientific background to believe that survival curves
under different covariate combinations will cross during the study period. We present a
new nonparametric regression model for the conditional hazard rate using a suitable sieve
of Bernstein polynomials. The proposed nonparametric methodology has three key fea-
tures: (i) the smooth estimator of the conditional hazard rate is shown to be a unique so-
lution of a strictly convex optimization problem for a wide range of applications; making
it computationally attractive, (ii) the model is shown to encompass a proportional hazards
structure, and (iii) large sample properties including consistency and convergence rates
are established under a set of mild regularity conditions. Empirical results based on several
simulated data scenarios indicate that the proposed model has reasonably robust perfor-
mance compared to other semiparametric models particularly when such semiparametric
modeling assumptions are violated. The proposed method is further illustrated on the gas-
tric cancer data and the Veterans Administration lung cancer data.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In regression analysis of survival data, the proportional hazard model (Cox, 1972) has become by far the most widely
usedmethod by researchers inmany disciplines especially in the field of biostatistics. Themost appealing features of the Cox
model include the unspecified baseline hazard function and the straightforward interpretation for the effect of categorical
covariates such as treatment assignment. In many applications the proportional hazard (PH hereafter) assumption is
generally considered reasonable for the cases with a long follow-up time (Perperoglou et al., 2007). In some other situations,
however, the validity of this simplification is certainly questionable. It is known that the violation of the PH assumption could
lead to erroneous inference in some circumstances (see e.g., Schemper, 1992). In these cases, several alternatives such as
proportional odds (PO hereafter) model (Bennett, 1983) and accelerated failure time (AFT hereafter) model (Kalbfleisch and
Prentice, 1980) have been proposed. But these semiparametric models may also turn out to be stringent or even unrealistic
in some cases. For instance, consider the case of crossing survival curves, in which there is scientific background to believe
that survival curves under different covariate combinations will cross during the study period. For example, in the well
known gastric cancer clinical trial (Stablein et al., 1981), patients receiving only chemotherapy may have higher survival
rates initially but such rates decaymuch faster compared to the group of patients receiving chemotherapy and radiotherapy.
None of the abovemodels (PH, PO, AFT) can accommodate such a feature of the data. The caseswith nonproportional hazards
can also occur in non-medical applications. For example, Dolton and O’Neill (1996) reported a non-proportional effect of
government official counseling on the hazard function of unemployment benefits sign-offs in the United Kingdom.
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In the Cox PH model, the conditional hazard function h(t|Z) is modeled as h(t|Z) = h0(t) exp(βTZ) where h0(·)
denotes the baseline hazard, Z represents the vector of covariates and the parameter of interest β is constant over time.
Several semiparametric extensions of the Cox PHmodel have been proposed by various authors to relax the proportionality
assumption. The most popular approach is to include a time-varying effect β(t) by replacing β in the Cox PH model. A
challenging step in the time-varying coefficient model is the estimation of the effect function β(·). Murphy and Sen (1991)
assumed β(·) is piecewise constant and proposed a histogram sieve estimator. Zucker and Karr (1990) used smoothing
splines based onpartial likelihood. The time-varying coefficientmodel has received extensive attention in literature recently.
For further details on more recent approaches on this subject, we refer to the papers by Martinussen and Scheike (2002),
Cai and Sun (2003) and Tian et al. (2005). Most of the methodologies involving the time-varying effect may turn out to be
computationally intensive because the form of likelihood function is usually very complicated. Besides, Perperoglou et al.
(2007) pointed out thatwhen survival curves cross, over-emphasizing on the regression coefficientmight not be appropriate.
The reason is that the appealing feature of easy interpretation and estimation of the Cox PH model, which comes from the
separation of time and covariate effects, will be lost under nonproportional hazards. Instead, the entire conditional hazard
or survival curve will be more informative to medical researchers. Therefore, in this paper we take a different direction by
directly modeling the conditional hazard function using Bernstein polynomials.

In contrast to various extensions of the Cox PH model to accommodate nonproportionality, our method is completely
nonparametric and computationally much simpler to implement. Although nonparametric models suffer from the curse of
dimensionality, as Spierdijk (2008) pointed out they can serve as starting points for building parametric or semiparametric
models in high dimensions. Fully nonparametric hazard regression models have been studied by many authors, most of
which focused on the kernel method and smoothing splines (see e.g., Li and Doss, 1995; Gray, 1996; Spierdijk, 2008, among
others). As pointed out by Tenbusch (1994, 1997), the estimators based on Bernstein polynomials can be regarded as kernel-
based estimators with spatial adaptive polynomials as weight or kernel functions. So instead of using the same kernel
function, the kernel function in the Bernstein polynomial based estimator adapts itself to the positions of the knots specified.
It is also this property makes the estimators based on Bernstein polynomials enjoy better boundary behavior than the usual
kernel-based estimators. Another important methodology in this line of research is referred to as HARE (Hazard Regression)
in Kooperberg et al. (1995). HARE is a regression model based on linear splines and their tensor products for the conditional
log-hazard function. In the HARE model, linear splines are used rather than quadratic or cubic splines in order to avoid
numerical integration in the log-likelihood (and in its gradient and Hessian matrix). This simplification is essentially due
to the model selection step involving stepwise addition and stepwise deletion incorporated in HARE. However, in some
situations where the conditional log-hazard function takes complex form the linear splines and their tensor products may
not capture the overall dependence of the event time on other covariates.

Bernstein polynomials have been considered in a wide range of statistical problems based on completely observed data.
The most common application is density estimation, which dates back to the work of Vitale (1975). Some of the most recent
work on this topic includes Petrone (1999), Babu et al. (2002) and Choudhuri et al. (2004) among many others. Bernstein
polynomials have also been applied in the regression setting by Tenbusch (1997) and Chang et al. (2007). In the context of
survival analysis with censored data, Chang et al. (2005) proposed using Bernstein polynomials for hazard rate estimation
in a Bayesian framework for a homogeneous population, i.e., without any covariates.

In this paper, we consider nonparametric hazard regression based on Bernstein polynomials for right-censored data.
As we will demonstrate later, Bernstein polynomials have several advantages in this particular setting. Monotonicity of
the cumulative hazard function can be modeled naturally via Bernstein polynomials. In addition, Bernstein polynomials
have nice differentiability properties such that the log-likelihood, its gradient, and Hessian matrix all take relatively easy
forms, making our method very easy to implement as compared to other computationally intensive methods such as those
based on the time-varying coefficient models. To obtain a smooth estimator for the conditional hazard function in a full
nonparametric setting, we use a sieve maximum likelihood estimator (Grenander, 1981; Geman and Hwang, 1982). The
proposed nonparametric regression model in this paper is shown to encompass a proportional hazards structure. The rest
of the paper proceeds as follows. In Section 2, we describe the model for categorical and continuous covariates. We show
that the sieve maximum likelihood estimate is consistent and the corresponding rate of convergence is derived in Section 3.
In Section 4, the proposedmethod is demonstrated through simulated data as well as real data from twowell known cancer
studies. Finally, we conclude with some discussions in Section 5.

2. Conditional hazard model using Bernstein polynomials

First, we consider the one-sample right-censored data with no covariates. Suppose an experiment or a clinical trial
consists of n subjects, Ti denotes the continuously distributed time to certain event of interest for the subject i where
i = 1, 2, . . . , n. The event time Ti is subject to random right-censoring Ci and hence for each subject we observe (Xi,∆i),
where Xi = min(Ti, Ci),∆i = I(Ti ≤ Ci), and I(A) denotes the indicator function that takes the value 1 when the event A is
true, otherwise I(A) = 0. We also assume that Ti is statistically independent of Ci for each i = 1, 2, . . . , n. For any t ≥ 0, the
cumulative hazard function is given by H(t) = − log S(t) and the hazard function h(t) = Ḣ(t), where S(t) = Pr(Ti > t) is
the survival function and Ḣ(t) denotes the derivative of H(t). Further, following standard practice (e.g. Tian et al., 2005) we
assume that there exists a τ < ∞ such that τ = inf{t : S(t) = 0}.
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