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a b s t r a c t

In this study, a model identification instrument to determine the variance component
structure for generalized linear mixed models (glmms) is developed based on the
conditional Akaike information (cai). In particular, an asymptotically unbiased estimator
of the cai (denoted as caicc) is derived as the model selection criterion which takes the
estimation uncertainty in the variance component parameters into consideration. The
relationship between bias correction and generalized degree of freedom for glmms is also
explored. Simulation results show that the estimator performswell. The proposed criterion
demonstrates a high proportion of correct model identification for glmms. Two sets of
real data (epilepsy seizure count data and polio incidence data) are used to illustrate the
proposed model identification method.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, generalized linear mixed models (glmms) have become a widely used tool in analyzing
correlated/longitudinal non-normal data. Early works on the estimation and inference for glmms can be found in Schall
(1991), Breslow and Clayton (1993), McGilchrist (1994) and Lee and Nelder (1996). The model selection issue arises
immediately when there is a set of candidate models for fitting same set of data. Selectionmethods for fixed/random effects
have been studied in the literature. Lee and Nelder (1996) proposed a method to test whether certain random component
should be dropped. To assess one or more random effect terms should be included in the model, some researchers have
proposed the use of a frequentist score test (Commenges and Jacqmin-Gadda, 1997; Lin, 1997). In the Bayesian framework,
Chen et al. (2003) considered a class of information priors for model selection. Chen and Dunson (2003) proposed a
hierarchical Bayesian model for random-effects model selection. Moreover, Azari et al. (2006) studied the selection of fixed
effects in longitudinal datamodelswhile Cai andDunson (2006) considered a fully Bayesian approach to study theproblemof
simultaneous selection of fixed and random effects in glmms. These studies mainly focus on the aspect of variable selection.
However, in many situations, one needs a more general model selection criterion for the glmms.

Considering the parameter-driven Poisson models for time series of count data (Zeger, 1988; Chan and Ledolter, 1995),
one of the commonly adopted approaches is to assume a process with stochastic autoregressive mean (categorized as
parameter driven model). The model was firstly studied by Zeger (1988) to analyze the polio incidence data; see also Chan
and Ledolter (1995) for more details. In these studies, the order of the latent autoregressive process is assumed to be one.
Putting time series of count data in the framework of glmm modeling, Yau and Kuk (2002) fitted the polio incidence data
by robust methods with the latent autoregressive process also assumed to be order one. In principle, as noted by Chan and
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Ledolter (1995), one can consider a higher order autoregressive latent process. However, when the model involves higher
orders, determining the optimal choice is not an easy task. The preceding discussion describes the fact that there are different
kinds of model selection problems for glmms and a general model identification instrument is needed.

In a different but related stream of study, for richly parameterized models, including linear hierarchical models, random
effect models, some smoothers and spatial models, the model selection problem is generally difficult. The reason is that
it is not straightforward to determine the effective number of parameters and hence the degree of freedom of the model
(Ye, 1998; Hodges and Sargent, 2001). Moreover, in glmms, the marginal distribution usually does not have an explicit
analytic form. As a consequence, the corresponding definition of the Akaike information criterion (Akaike, 1973) is not that
straightforward. What likelihood should be chosen if the marginal distribution is not readily available? How to evaluate the
correct degree of freedom or model complexity? To address these problems, Ye (1998) proposed a generalized definition of
the degree of freedom in complexmodeling procedures. Lee andNelder (1996) derived the degree of freedom from the scaled
deviance for the lack of fit test in hierarchical generalized linear models (hglms), which extends the scaled residual sum of
squares in linear models to hglms. Hodges and Sargent (2001) considered an extension of the notion of degree of freedom
for richly parameterized models. Spiegelhalter et al. (2002) proposed a Bayesian measure of complexity for hierarchical
models.

For the information based criterion, Vaida and Blanchard (2005) defined the conditional Akaike information (cai) for
mixed-effects models. The conditional Akaike information criterion (caic) was then derived directly according to this
definition, assuming variance component parameters are known. They suggested using a plug-in estimator for the unknown
variance component parameters in practice and argued that the impact is negligible. This caic is referred to as conventional
caic in Greven and Kneib (2010). Liang et al. (2008) proposed a corrected version of caic to avoid the bias due to assuming
known variance component parameters. Greven and Kneib (2010) studied the behavior of caic in detail and suggested that
ignoring the uncertainty in the estimation of variance component parameters induces a built-in-bias such that the resulting
caicwill favor a more complex model. Greven and Kneib (2010) suggested using the corrected caic (Liang et al., 2008) to fix
this deficiency and proposed an analytic expression to avoid heavy computational burden. However, such a corrected caic
is obtained based on normality assumptions and is not directly extendable to glmms. For hglm, Lee et al. (2006) considered
an information criterion based on conditional log-likelihood. Ha et al. (2007), proposed some improved information criteria
based on extensions of conditional likelihood deviance and studied their relative merit.

The purpose of this paper is to develop the information based model identification criterion based on the conditional
Akaike information for glmms. In particular, when taking the unknown variance component parameters into consideration,
an asymptotically unbiased estimator for cai (denoted as caicc) is derived and employed as model selection criterion. The
behavior of the criterion is investigated in both theoretical and numerical aspects. Furthermore, an analogous definition of
generalized degree of freedom (gdf) for glmms is derived and the relationship between the bias correction and the gdf is
investigated.

The rest of the paper is arranged as follows. In the next section, the formulation and estimation procedure for glmms is
briefly described. In Section 3, the model identification criterion for glmms is studied and major results are presented. In
Section 4 the performance of themodel selection criterion is assessed via simulation study under different settings. Two sets
of real data are then used to demonstrate the proposed model selection method. The final section gives some concluding
remarks.

2. Model formulation and estimation

Consider an n-dimensional observable response vector w, which has a distribution depending on the vector quantity η
defined by

η = Xβ + Zu, (1)

where X is an n × k matrix of rank k, Z = (Z1, . . . , Zl) is an n × v matrix of rank v, β is the k-dimensional fixed effect
vector and the v-dimensional random effects u = (uT

1, . . . , u
T
l )

T. Z and u are partitioned conformally and uj are independent
random effects distributed as vj-dimensionalN{0, τ 2

j Aj(ϕ)},
∑l

j=1 vj = v. τ 2
j and ϕ (p-dimensional vector) are the unknown

variance component parameters. For convenience, denote A = diag{τ 2
j Aj(ϕ)}, λ = (ϕT, τ 2

j )T, j = 1, . . . , l.
Let l1(w | β, u) be the log-likelihood of w given u, l2(u | ϕ, τ 2

j ) be the logarithm of the probability density function of u.
As noted by McGilchrist (1994), the blup-type log-likelihood

h = l1 + l2

carries over the spirit of best linear unbiased predictors (blup) into a non-normal framework. The estimators β̂w and ûw are
found bymaximizing h and these are called penalized likelihood estimators (ple). Equivalent estimators can also be derived
in the hierarchical modeling framework (Lee and Nelder, 1996). To find the maximum, take the derivative in both sides of h
with respect to β and u, it follows that

∂h(w | β, u)
∂β

= XT ∂ l1(w | β, u)
∂η

(2)
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