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a b s t r a c t

Finite population estimation is the overall goal of sample surveys. When information
regarding auxiliary variables are available, one may take advantage of general regression
estimators (GREG) to improve sample estimates precision. GREG estimators may be
derived when the relationship between interest and auxiliary variables is represented
by a normal linear model. However, in some cases, such as when estimating class
frequencies or counting processes means, Bernoulli or Poisson models are more suitable
than linear normal ones. This paper focuses on building regression type estimators under
a model-assisted approach, for the general case in which the relationship between interest
and auxiliary variables may be suitably described by a generalized linear model. The
finite population distribution of the variable of interest is viewed as if generated by a
member of the exponential family, which includes Bernoulli, Poisson, gamma and inverse
Gaussian distributions, among others. The resulting estimator is a generalized linear
model regression estimator (GEREG). Its general form and basic statistical properties
are presented and studied analytically and empirically, using Monte Carlo simulation
experiments. Three applications are presented in which the GEREG estimator shows better
performance than the GREG one.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Unbiased estimation of finite population means, totals and percentages, based on sample surveys using probability
sampling, can be accomplished by the Horvitz–Thompson estimator. When information regarding auxiliary variables is
available, however, onemay take advantage of general regression estimators (GREG) to improve sample estimates’ precision.
Such GREG estimators may be derived under a model assisted estimation approach (see, for example, Särndal et al., 2003).
They also can be derived when the relationship between interest and auxiliary variables may be represented by a normal
linear model, under a prediction approach for finite populations. Several authors, such as Bolfarine and Zacks (1992), Isaki
and Fuller (1982),Wright (1983) and Fuller (2002), have beenworking on the subject of regression estimators. Nevertheless,
since the efficiency of the GREG methodology lies on the ability of the formulated regression model to describe the
concomitant behavior of the interest variable and the auxiliary ones, sometimes it is necessary to consider using models
to deal appropriately with cases where the scale measurement of the interest variable is not continuous or it is continuous
but highly skewed. Considering broader classes of models is also needed for cases in which the relationship between the
interest variable and the auxiliary ones is clearly not linear. Lehtonen and Veijanen (1998), for example, considered deriving
a Logistic General Regression Estimator (LGREG) using a multinomial response model to describe such relationship, for
estimating class frequencies. Breidt andOpsomer (2000) focused on anonparametric regressionmodeling assisted approach,
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Table 1
Principal distributions belonging to exponential family.

Distribution b(θ) θ φ V (µ)

Normal θ2/2 µ 1/σ 2 1
Poisson eθ logµ 1 µ

Bernoulli log(1 + eθ ) log{µ/(1−µ)} 1 µ(1−µ)

Gamma − log(−θ) −1/µ 1/(CV)2 µ2

Inverse G. −
√

−2θ −1/2µ2 φ µ3

proposing and studying the properties of local polynomial regression estimators. Estevao and Särndal (2004) studied several
applications of domain estimationusing calibration. Duchesne (2003) compared the efficiency of an LGREGand aGREGbased
on a normal linear model using Monte Carlo simulation. Lehtonen et al. (2003) compared the performance of different
estimators, including those assisted by the logistic regression model. Lehtonen et al. (2005) studied the importance of
model specification for estimating the total of a polytomous interest variable for a number of large or small domains.
Myrskylä (2007) investigated variance estimation for the LGREG estimator for domains. Li (2008) introduced the Box–Cox
transformation into the generalized regression estimator, which can be especially suitable to deal with highly skewed
continuous and positive interest variables, where normal response models may not be appropriate. Using a model-assisted
estimation approach, this paper focuses on proposing regression estimators for the general case in which the relationship
between interest and auxiliary variablesmay be appropriately described by a generalized linearmodel. The finite population
distribution of the interest variable is viewed as if generated by a member of the exponential family distribution, which
includes normal (even with variance heterogeneity), Bernoulli, Poisson, gamma and inverse Gaussian distributions. The
resulting estimator is a generalized linear model regression estimator (GEREG). The GEREG setup is flexible enough to
accommodate classical estimators, such as the ratio estimator, as particular cases. Therefore, it is expected that a GEREG
estimator would perform at least as better as a GREG estimator on those situations where linear models would not fit the
data as well as generalized linear models. This paper introduces the GEREG estimator in its general form and their statistical
properties, taking into account a broad class of sampling designs.We consider the usual inference setup for finite population,
based on a sample S, of size n, selected from a population, of size N (n < N), according to a probability sample with first and
second-order inclusion probabilities given byπk = P(k ∈ S) andπkl = P (k, l ∈ S), respectively. yk is defined to be the value
of the interest variable, measured at element k ∈ U , for direct element sampling schemes. When considering a one-stage
cluster design, we regard U as the set of clusters listed on a sampling frame, and yk as the aggregated value of the variable of
interest, for cluster k ∈ U . In any case, we denote by xk = (xk1, . . . , xkJ)T the auxiliary information vector for the element (or
cluster) k ∈ U . The paper is organized in four sections: Section 1 is an introduction; Section 2 is a brief review of generalized
linear models for finite population; in Section 3 we present the GEREG estimator and its main statistical properties. We also
present a simulation study that illustrates the performance of the GEREG estimator. Section 4 presents three applications of
the proposed estimator.

2. Generalized linear model in finite population

The literature concerning generalized linear models (GLM) is vast. McCullagh and Nelder (1989), Dobson (2001) and Fox
(2008) are only a few examples of books presenting the subject. In a GLM setup, Y1, . . . , Yn are considered the values of
an interest variable Y measured in n elements. The Y ’s are supposed to be independent random variables with probability
distribution belonging to the exponential family. Let Yk be the random variable Y for element k. Its density function may be
expressed as

f (y; θk, φk) = exp{φk[yθk − b(θk)] + c(y, φk)}, (1)

where c(·) is a known function, θk is the canonical parameter, E(Yk) = µk = b′(θk) is the expected value, Var(Yk) =

φ−1
k V (µk), with Vk = V (µk) = ∂µk/∂θk is the variance function, and φ−1

k > 0 is the dispersion parameter. Generalized
linear models are defined by (1) and by the following systematic component

g(µk) = ηk =

J−
j=1

βjxkj = xTkβ, (2)

where xk = (xk1, . . . , xkJ)T is a vector of J explanatory variables measured at element k, β = (β1, . . . , βJ)
T a vector of

unknown parameters, and g(·), a monotone differentiable function, called the link function. When g(·) is defined in such a
way that θk = ηk for every k, then g(·) is called the canonic link function. It has been assumed in this work that if k and l are
such that φk ≠ φl, then φk ∝ δk, for k = 1, . . . , n, with δk being a known quantity for every k. Particular cases of such setup
include normal, Bernoulli, Poisson, gamma and the inverse Gaussian response models. Table 1 shows b(θ), θ, φ and V (µ)
forms for main exponential family distributions.

The maximum-likelihood method may be used to estimate GLM parameters. The estimation method can use sampling
weights in the finite population context (see Nordberg, 1989). For instance, µ̂U

k and µ̂S
k are estimators of µk; however, the
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