
Big Data Research 1 (2014) 52–65

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Efficient Indexing and Query Processing of Model-View Sensor Data in 

the Cloud ✩

Tian Guo a,∗, Thanasis G. Papaioannou b, Karl Aberer a

a EPFL, Switzerland
b Center for Research & Technology Hellas (CERTH), Greece

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 11 July 2014

Keywords:
Big data
Index
Key-value stores
MapReduce
Approximation
Query optimization

As the number of sensors that pervade our lives increases (e.g., environmental sensors, phone sensors, 
etc.), the efficient management of massive amount of sensor data is becoming increasingly important. 
The infinite nature of sensor data poses a serious challenge for query processing even in a cloud 
infrastructure. Traditional raw sensor data management systems based on relational databases lack 
scalability to accommodate large-scale sensor data efficiently. Thus, distributed key-value stores in the 
cloud are becoming a prime tool to manage sensor data. Model-view sensor data management, which 
stores the sensor data in the form of modeled segments, brings the additional advantages of data 
compression and value interpolation. However, currently there are no techniques for indexing and/or 
query optimization of the model-view sensor data in the cloud; full table scan is needed for query 
processing in the worst case. In this paper, we propose an innovative index for modeled segments 
in key-value stores, namely KVI-index. KVI-index consists of two interval indices on the time and 
sensor value dimensions respectively, each of which has an in-memory search tree and a secondary list 
materialized in the key-value store. Then, we introduce a KVI-index–Scan–MapReduce hybrid approach 
to perform efficient query processing upon modeled data streams. As proved by a series of experiments 
at a private cloud infrastructure, our approach outperforms in query-response time and index-updating 
efficiency both Hadoop-based parallel processing of the raw sensor data and multiple alternative indexing 
approaches of model-view data.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Recent advances in sensor technology have enabled the vast 
deployment of sensors embedded in user devices that monitor var-
ious phenomena for different applications of interest, e.g., air/elec-
trosmog pollution, radiation, early earthquake detection, soil mois-
ture, permafrost melting, etc. The data streams generated by a 
large number of sensors are represented as time series in which 
each data point is associated with a time-stamp and a sensor 
value. These raw discrete observations are taken as the first citizen 
in traditional relational sensor data management systems, which 
leads to a number of problems. On one hand, in order to perform 
analysis of the raw sensor data, users usually adopt other third-
party modeling tools (e.g., Matlab, R and Mathematica), which in-
volve of tedious and time-consuming data extract, transform and 

✩ This article belongs to Scalable Computing for Big Data.

* Corresponding author.
E-mail addresses: tian.guo@epfl.ch (T. Guo), thanasis.papaioannou@iti.gr

(T.G. Papaioannou), karl.aberer@epfl.ch (K. Aberer).

load (ETL) processes [1]. Moreover, such data analysis tools are 
usually used for static data set and therefore cannot be applied 
for online processing of sensor data streams. On the other hand, 
unbounded sensor data streams often have missing values and un-
known errors, which also poses great challenges for traditional raw 
sensor data management.

To this end, various model-based sensor data management 
techniques [1–4] have been proposed. Model-view sensor data 
management leverage time series approximation and modeling 
techniques to segment the continuous sensor time series into dis-
joint intervals such that each interval can be approximated by a 
kind of model, such as polynomial, linear or SVD. These models, 
for all the intervals (or segment models), exploit the inherent cor-
relations (e.g. with time or among data streams) in the segments 
of sensor time series and approximate each segment by a certain 
mathematical function within a certain error bound [5–9]. Then, 
one can only materialize the models of the segments instead of 
the raw data and harvest a number of benefit:

First, model-view sensor data achieves compression over raw 
sensor data and therefore requires less storage overhead [10–12]. 
Second, due to the sampling frequency or sensor malfunction, 

http://dx.doi.org/10.1016/j.bdr.2014.07.005
2214-5796/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.bdr.2014.07.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:tian.guo@epfl.ch
mailto:thanasis.papaioannou@iti.gr
mailto:karl.aberer@epfl.ch
http://dx.doi.org/10.1016/j.bdr.2014.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2014.07.005&domain=pdf


T. Guo et al. / Big Data Research 1 (2014) 52–65 53

there may be some missing values at some time points. If one 
query involves such time points, then the relevant segment model 
can be used to estimate the values [10–12]. In some degree, 
model-view sensor data increases the data availability for query 
processing. Third, there usually exist outliers in raw sensor data, 
which has negative effect on the query results. Model-view sen-
sor data removes the outliers in each interval via the segment 
model and historical data on upper and lower data bounds, thereby 
diminishing the effect of outliers in query results. Fourth, regard-
ing the similarity search or pattern discovery in sensor time-
series mining, the segment-based time series representation is a 
powerful tool for dimension reduction and search space pruning 
[9,13,14].

However, proposed model-based sensor data management ap-
proaches mostly employ the relational data model and process 
queries based on materialized views [2,3] on top of the modeled 
segments of sensor data. Nowadays, the amount of data produced 
by sensors is exponentially increasing. Moreover, the real-time pro-
duction of sensor data requires the data management system to be 
able to handle high-concurrent model-view sensor data from mas-
sive sensors and this is difficult for traditional relational database 
to realize. To this end, recent prevalent cloud store and computing 
techniques provide a promising way to manage model-view sensor 
data [15–19].

The main focus of this paper is on how to manage the seg-
ment models of sensor data, namely model-view sensor data with 
the newly emerging cloud stores and computing techniques rather 
than how to explore more advanced sensor data segmentation al-
gorithms.

In our approach, we exploit key-value stores and the MapRe-
duce parallel computing paradigm [18,20], two significant aspects 
of cloud computing, to realize indexing and querying model-view 
sensor data in the cloud. We characterize the modeled segments 
of sensor time series by the time and the value intervals of each 
segment [16,17]. Consequently, in order to process range or point 
queries on model-view sensor data, our index in the cloud store 
should excel in processing interval data. Current key-value built-in 
indices do not support interval-related operations. The interval in-
dex for model-view sensor data should not only work for static 
data, but it should be dynamically updated based on the new 
arriving segments of sensor data. If traditional batch-updating or 
periodical re-building strategy was applied here [21,22], then the 
high speed of sensor data yielding might lead to a large size of 
the new unindexed data, even in short time periods and to signif-
icant index updating delay as well. As a result, the performance 
of queries involving both indexed and unindexed data would de-
generate greatly. Therefore, the interval index in the cloud store 
should be able to insert an individual new modeled segment in an 
online manner.

The contributions of this paper are summarized as follows:

• Innovative interval index: We propose an innovative interval 
index for model-view sensor data management in key-value 
stores, referred to as KVI-index. KVI-index is a two-tier struc-
ture consisting of one lightweight and memory-resident binary 
search tree and one index-model table materialized in the key-
value store. This composite index structure can dynamically 
accommodate new sensor data segments very efficiently.

• Hybrid model-view query processing: After exploring the 
search operations in the in-memory structure of the KVI-index 
for range and point queries, we introduce a hybrid query pro-
cessing approach that integrates range scan and MapReduce to 
process the segments in parallel.

• Intersection search: We introduce an enhanced intersection 
search algorithm (iSearch+) that produces consecutive results 
suitable for MapReduce processing. We theoretically analyze 

the efficiency of (iSearch+) and find the bound on the redun-
dant index nodes that it returns.

• Experimental evaluation: Our framework has been fully imple-
mented, including the online sensor data segmentation, mod-
eling, KVI-index and the hybrid query processing, and it has 
been thoroughly evaluated against a significant number of al-
ternative approaches. As experimentally shown based on real 
sensor data, our approach significantly outperforms in terms 
of query response time and index updating efficiency all other 
ones for answering time/value point and range queries.

The remainder of this paper is organized as follows: Section 2
summarizes some related work on model-view sensor data man-
agement, interval index and index-based MapReduce optimization 
approaches. In Section 3, we provide a brief description of sensor-
data segmentation, querying model-view sensor data and the ne-
cessity to develop interval index for managing model-view sensor 
data in key-value stores. The detailed designs of our innovative 
KVI-index and the hybrid query processing approach are discussed 
in Sections 4 and 5 respectively. Then, in Section 6, we present 
thorough experimental results to evaluate our approach with tradi-
tional query processing ones on both raw sensor data and modeled 
data segments. Finally, in Section 7, we conclude our work.

2. Related work

Time series segmentation is an important research problem 
in the areas of data approximation, data indexing and data min-
ing. A lot of work has been devoted to exploit different types 
of models to approximate the segments of time series, such that 
the pruning and refinement framework can be applied to this 
segment-represented time series for the pattern matching or sim-
ilarity search [9,13]. Some other researchers proposed techniques 
for managing the segment models that approximate sensor time 
series in relational databases. MauveDB designed a model-based 
view to abstract underlying raw sensor data; it then used models 
to project the raw sensor readings onto grids for query process-
ing [3]. As opposed to MauveDB, FunctionDB only materializes 
segment models of raw sensor data [2]. Symbolic operators are 
designed to process queries using models rather than raw sen-
sor data. However, both approaches in [3] and [2] do not take 
into account applying indices to improve query processing. More-
over, their proposed approach focuses on managing static dataset 
of time series rather than dynamic time series.

Also, each segment of time series could be characterized by its 
time and value intervals. Then, one should consider employing an 
interval index for processing queries over model-view sensor data. 
Two common used indices for interval data are segment tree [21]
and interval tree [23]. As for segment tree, it is essentially a static 
data structure that needs an initialization process to construct el-
ementary intervals based on the initial dataset [21]. Once a new 
interval outside of the domain of current segment tree arrives, the 
elementary intervals should be rebuilt, which is not suitable for 
the real time nature of sensor data streams [21]. Regarding the in-
terval tree, individual interval is not divided and replicated during 
the insertion phase as in the segment tree and therefore the stor-
age overhead is linear to the number of intervals to index [23–25]. 
However, it is a memory-oriented structure.

Some efforts [22,23,26,27] have also been done to external-
ize these in-memory index data structures. The relational interval 
tree (RI-tree) [26] integrates interval tree into relational tables and 
transforms interval queries into SQL queries on tables. This method 
makes efficient use of built-in B+-tree indices of RDBMS. Neverthe-
less, in this paper, we aim to design an interval index structure for 
model-view sensor data that is compatible with key-value stores 
and distributed query processing in the cloud.



Download English Version:

https://daneshyari.com/en/article/415117

Download Persian Version:

https://daneshyari.com/article/415117

Daneshyari.com

https://daneshyari.com/en/article/415117
https://daneshyari.com/article/415117
https://daneshyari.com

