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a b s t r a c t

In biomedical studies, researchers are often interested in assessing the association between
one or more ordinal explanatory variables and an outcome variable, at the same time
adjusting for covariates of any type. The outcome variable may be continuous, binary, or
represent censored survival times. In the absence of precise knowledge of the response
function, using monotonicity constraints on the ordinal variables improves efficiency in
estimating parameters, especiallywhen sample sizes are small. An active set algorithm that
can efficiently compute such estimators is proposed, and a characterization of the solution
is provided. Having an efficient algorithm at hand is especially relevant when applying
likelihood ratio tests in restricted generalized linear models, where one needs the value
of the likelihood at the restricted maximizer. The algorithm is illustrated on a real life data
set from oncology.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In many applied problems and especially in biomedical studies, researchers are interested in associating an outcome
variable to several explanatory variables, typically via a generalized linear or proportional hazards regression model. Here,
the explanatory variables or predictors may be continuous, nominal or ordered. Estimates of regression parameters can be
obtained via maximizing a least-squares or (partial) likelihood function. Especially if the number of observations is small
to moderate, researchers often encounter noisy estimates of the regression parameters, possibly leading to patterns in the
regression estimates that violate the a priori knowledge of a factor being ordered. In order to improve accuracy of estimates
and efficiency of overall tests for associations, it is tempting to use the prior knowledge of orderings in some of the regression
coefficients.
FromaBayesian perspective, receiving estimators in these type of problems is straightforward usingMarkov ChainMonte

Carlo approaches. Pioneered in a linear model framework by Gelfand et al. (1992), Bayesian approaches have been proposed
by Dunson and Herring (2003), Dunson and Neelon (2003) and Robert and Hwang (1996). We also refer to the discussion in
the latter two papers. To use Gibbs sampling to get the ordered predictor estimate in logistic regression, Holmes and Held
(2006) combine the approach in Gelfand et al. (1992) with an auxiliary variable technique. Note that using e.g. flat priors
on the regression coefficient vector β it is straightforward to show that the maximum a posteriori estimator is equal to the
constrained MLE introduced in Section 2.
Although conceptually straightforward, the implementation of these Bayesian approaches is not without fallacies. For

obtaining not only point estimates but also assessing whether parameters are equal or strictly ordered across level of pre-
dictors, one needs to borrow frommore frequentist approaches and ‘‘isotonize’’ unconstrained parameter estimates (Dunson
and Neelon, 2003). Only then one can accommodate ‘‘flat regions’’, i.e. successive estimates for ordered levels that are equal.

∗ Tel.: +41 0 44 634 46 43; fax: +41 0 44 634 43 86.
E-mail address: kaspar.rufibach@ifspm.uzh.ch.

0167-9473/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2010.01.014

http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:kaspar.rufibach@ifspm.uzh.ch
http://dx.doi.org/10.1016/j.csda.2010.01.014


K. Rufibach / Computational Statistics and Data Analysis 54 (2010) 1442–1456 1443

Although there exists vast literature on frequentist estimation subject to order restrictions (Robertson et al., 1988),
estimation in the specific regression model discussed here has gained surprisingly little attention (Mukerjee and Tu, 1995).
This may be due to the fact that setting up algorithms in these type of problems is generally difficult (Dunson and Neelon,
2003), and requires approaches that need to be adapted to specific problems, necessitating a vast literature for numerous
cases of order restricted estimation.Wemention Dykstra and Robertson (1982), Jamshidian (2004), Matthews and Crowther
(1998), Tan et al. (2007), Taylor et al. (2007), or Balabdaoui et al. (in press) discussing computation of order restricted
estimates in specific regression problems, and Balabdaoui and Wellner (2004), Terlaky and Vial (1998) or Rufibach (2007)
for estimation of probability densities under order restrictions. Additionally, generalizations of the pool-adjacent-violaters
algorithm (PAVA) to inclusion of continuous isotonic covariates are discussed in Bacchetti (1989), Cheng (2009), Ghosh
(2007) and Morton-Jones et al. (2000) in the context of ‘‘additive isotonic regression’’. Estimation in this type of model is
usually performed using the cyclical PAVA in connection with backfitting. However, note that we are not in this genuinely
semiparametric setting, but rather the number of levels of an ordered factor is given a priori and remains fixed for any
number of observations.
Recently, a type of algorithm, which has been around in optimization theory for some decades (Fletcher, 1987), has

gained considerable attention in the statistical literature: active set algorithms. Dümbgen et al. (2007) use and generalize
such an algorithm to compute a log-concave density not only from i.i.d. but even from censored data. An algorithm similar in
spirit is the support reduction algorithm discussed in Groeneboom et al. (2008). The latter authors apply it to the estimation
of a convex density and to Gaussian deconvolution. A slight generalization of the support reduction algorithm is used to
estimate a convex-shaped hazard function in Jankowski andWellner (in press). Beran and Dümbgen (in press) extend active
set algorithms to the estimation of smooth bimonotone functions. They illustrate their algorithm on regression with two
ordered covariates, so also treating the example dealt with in this paper. However, Beran and Dümbgen (in press) only
consider least-squares or least absolute deviation estimation, and at most two ordered factors. In this paper, we propose an
algorithm for an arbitrary number of ordered factors, and we also provide a characterization of the solution.
A key feature of an active set algorithm is, that although iterative, it terminates after finitely many steps, and that

the solution is finally found via an unconstrained optimization. This implicitly implies that, as opposed to some Bayesian
approaches (Dunson and Neelon, 2003), the active set algorithm is not hurt if estimates of subsequent levels turn out to be
equal. In Section 2 we show that the estimation of a regression function in generalized linear models (GLM) under the above
ordered factor restriction can be easily performed using such an active set algorithm.

Optimal scaling. A reviewer drew our attention to optimal scaling, where one seeks to assign numeric values to categorical
variables in some optimal way, see e.g. Breiman and Friedman (1985), Gifi (1990) and Hastie and Tibshirani (1990), or
applied to modeling interactions in Van Rosmalen et al. (2009). In Gifi (1990, Section 2) categories of the original categorical
variables are replaced by ‘‘category quantifications’’, and from then on the variables are considered to be quantitative. Note
that in the approach discussed in this paper, one does not necessarily look for an optimal transformation, but rather imposes
a priori knowledge on a given ordered predictor. In the example analyzed in Section 9 it seems plausible that a higher tumor
or nodal stage is associated with a higher risk of experiencing a second primary tumor.

Ordered predictors.While the treatment of quantitative and grouped predictors in regression models is straightforward, we
briefly review alternative approaches that can be applied to deal with an ordered explanatory variable z. Let us assume the
levels of z are coded as 1, . . . , kwhere k ≥ 2 and the levels are increasingly ordered, i.e. 1 ≤ · · · ≤ k.
The most straightforward way to incorporate z as a predictor is simply to ignore the information about the groups and

consider it a quantitative variable. This approach implicitly assumes that the group levels represent a true dimension, with
intervals measured between adjacent categories that correspond to the chosen coding. If the ordinal values are arbitrarily
assigned rather than actually measured, the regression coefficient is then difficult or impossible to interpret.
Supposedly themost prevalent approach to incorporate an ordered predictor z in a regressionmodel is to introduce k−1

dummy variables z2, . . . , zk where zi = 1{z = i}, i = 2, . . . , k. This approach ignores the additional knowledge of z having
ordered levels, entailing that the estimated parameters β̂2, . . . , β̂k corresponding to the above dummy variables may not
be increasingly ordered. This is especially relevant in small sample studies, where noisy estimates may confuse the proper
order of dummy variable coefficients.
To simplify interpretation of models, especially when interactions are to be incorporated, researchers sometimes resort

to dichotomizing a grouped factor, i.e. introducing only one dummy variable z1 = 1{z ≤ l}, for some 1 ≤ l < k. Here,
the additional knowledge about the ordered levels is not used and may cause a substantial loss of predictive information
(Steyerberg, 2009, Section 9.1).
Another choice may be polynomial contrasts. One then introduces new variables zi = i2{z = i}, i = 2, . . . , k. To

avoid correlated estimators β̂i and therefore mutually dependent tests when doing variable selection, researchers generally
prefer to modify the design matrix in order to get orthogonal polynomial contrasts. The function as.ordered() in R
(R Development Core Team, 2009) does this by default.
Gertheiss and Tutz (2008) proposed a ridge-regression related approach to perform regression with ordered factors.

Consider the predictor z with ordered categories 1, . . . , k and the linear regression model

y = β2z2 + · · · + βkzk + ε
= Zβ + ε. (1)
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