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a b s t r a c t

A modified active subset selection method based on quadratic Rényi entropy and a fast
cross-validation for fixed-size least squares support vector machines is proposed for
classification and regression with optimized tuning process. The kernel bandwidth of
the entropy based selection criterion is optimally determined according to the solve-the-
equation plug-in method. Also a fast cross-validation method based on a simple updating
scheme is developed. The combination of these two techniques is suitable for handling
large scale data sets on standard personal computers. Finally, the performance on test
data and computational time of this fixed-size method are compared to those for standard
support vector machines and ν-support vector machines resulting in sparser models with
lower computational cost and comparable accuracy.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Support vector machines (SVM) (Vapnik, 1995, 1999) and least squares support vector machines (LS-SVM) (Suykens
and Vandewalle, 1999; Suykens et al., 2002) are state of the art learning algorithms for pattern recognition and function
estimation. Typically a quadratic programming (QP) problem has to be solved in dual space in order to determine the SVM
model. The formulation of the optimization problem in the primal space associatedwith this QP problem involves inequality
constraints in the form of box constraints and an additional equality constraint.
Unfortunately, the designs of QP solvers, e.g. MINOS and LOQO, assume that the full kernel matrix is readily available.

To overcome this difficulty, decomposition methods (Osuna et al., 1997a,b; Saunders et al., 1998; Joachims, 1999) were
designed. A particular case of the decomposition method is iterative chunking where the full scale problem is restricted to a
small subset of training examples called the working set. An extreme form of chunking is sequential minimal optimization
(SMO) proposed by Platt (1999). SMO uses the smallest possible working set size, i.e. two elements. This choice greatly
simplifies the method. Due to this, SMO is considered as the current state of the art QP solver for solving medium scale as
well as large scale SVM.
In the LS-SVM formulation the inequality constraints are replaced by equality constraints and a sum of squared errors

(SSE) cost function is used. Due to the use of equality constraints and the L2 cost function in LS-SVM the solution is found
by solving a linear system instead of quadratic programming. To tackle large scale problems with LS-SVM, Suykens et al.
(1999) and Van Gestel et al. (2004) effectively employed the Hestenes–Stiefel conjugate gradient algorithm (Golub and Van
Loan, 1989; Suykens et al., 1999). This method is well suited for problems with a larger number of data (up to about 10,000
data points). As an alternative, an iterative algorithm for solving large scale LS-SVM was proposed by Keerthi and Shevade
(2003). Thismethod is based on the solution of the dual problem using an idea similar to that of the SMO algorithm, i.e. using
Wolfe duality theory, for SVM.
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The vast majority of textbooks and articles discussing SVM and LS-SVM first state the primal optimization problem and
then go directly to the dual formulation (Vapnik, 1995; Suykens and Vandewalle, 1999). A successful attempt at solving LS-
SVM inprimalweight space resulting in a parametricmodel and sparse representation, introducedby Suykens et al. (2002), is
referred to as using fixed-size least squares support vector machines (FS-LSSVM) andwas also applied in Espinoza et al. (2007).
In this method an explicit expression for the feature map or an approximation to it is required. A procedure for finding this
approximated featuremap is based on the Nyströmmethod (Nyström, 1930; Baker, 1977). Williams and Seeger (2001) used
the Nyström method to speed up Gaussian processes (GP) (Williams and Barber, 1998). The Nyström method is related to
finding a low rank approximation to the given kernelmatrix by choosingm rows or columns of the kernelmatrix.Manyways
of selecting thosem rows or columns of the kernelmatrix can be found in the literature (Suykens et al., 2002; Achlioptas et al.,
2002;Drineas andMahoney, 2005). Smola and Schölkopf (2000) presented a sparse greedy approximation technique for con-
structing a compressed representation of the kernel matrix. This technique approximates the kernel matrix by the subspace
spanned by a subset of its columns. The basis vectors are chosen incrementally to minimize an upper bound of the approx-
imation error. A comparison of some of the above mentioned techniques can be found in Hoegaerts et al. (2004). Suykens
et al. (2002) proposed searching form rows or columnswhilemaximizing the quadratic Rényi entropy criterion and estimate
in the primal space leading to a sparse representation. This criterion will be used in the remainder of the paper.
The kernel representation of the quadratic Rényi entropy, established by Girolami (2002) and related to density

estimation and principal component analysis, requires a bandwidth specific to the entropy criterion. Numerous bandwidth
selection methods for density estimation exist, e.g. least squares cross-validation (LSCV) (Rudemo, 1982; Bowman, 1984),
biased cross-validation (BCV) (Scott and Terrel, 1987), smoothed bootstrap (SB) (Taylor, 1989; Faraway and Jhun, 1990),
plug-ins (Hall, unpublished manuscript; Sheather, 1986; Sheather and Jones, 1991), reference rules (Deheuvels, 1977;
Silverman, 1986). In this paper we use the solve-the-equation plug-in method (Sheather and Jones, 1991) which is related
to the plug-in family. The rationale for using this method is based on the fact that the calculation can be done efficiently
using the improved fast Gauss transform (IFGT) (Yang et al., 2003) and hence it is computationally more efficient than LSCV,
BCV and SB. Also it has better convergence rates than the above mentioned methods (Sheather, 2004).
Kernel based methods require the determination of tuning parameters including a regularization constant and kernel

bandwidth. A widely used technique for estimating these parameters is cross-validation (CV) (Burman, 1989). A simple
implementation of v-fold cross-validation trains a classifier/regression model for each split of the data and is thus
computationally expensive when v is large, e.g. in leave-one-out (LOO) CV. An extensive literature exists on reducing the
computational complexity of v-fold CV and LOO-CV; see e.g. (Vapnik and Chapelle, 2000;Wahba et al., 2000) for SVM, (Ying
and Keong, 2004; An et al., 2007) for LS-SVM and (Cawley and Talbot, 2004) for sparse LS-SVM. Using the fact that the
FS-LSSVM training problem has a closed form, we apply a simple updating scheme to develop a fast v-fold CV suitable for
large data sets. For typical 10-fold CV, the proposed algorithm is 10 to 15 times faster than the simple implementation.
Experiments also show that the complexity of the proposed algorithm is not very sensitive to the number of folds.
A typicalmethod for estimating the tuning parameterswould define a grid (grid-search) over these parameters of interest

andperform v-fold CV for each of these grid values. However, three disadvantages comeupwith this approach (Bennett et al.,
2006). A first disadvantage of such a grid-search CV approach is the limitation of the desirable number of tuning parameters
in a model, due to the combinatorial explosion of grid points. A second disadvantage of this approach is their practical
inefficiency; namely, they are incapable of assuring the overall quality of the solution produced. A third disadvantage in
grid-search is that the discretization fails to take into account the fact that the tuning parameters are continuous. Therefore
we propose an alternative for finding better tuning parameters. Our strategy is based on the recently developed coupled
simulating annealing (CSA) method with variance control proposed by Xavier de Souza et al. (2006, in press). Global
optimization methods are typically very slow. For many difficult problems, ensuring convergence to a global optimum
might mean impractical running times. For such problems, a reasonable solution might be enough in exchange for a faster
convergence. Precisely for this reason, many simulated annealing (SA) algorithms (Ingber, 1989; Rajasekaran, 2000) and
other heuristic based techniques have been developed. However, due to speed-up procedures, these methods often get
trapped in poor optima. The CSAmethod used in this paper is designed to easily escape from local optima and thus improves
the quality of solution without compromising too much the speed of convergence. To better understand the underlying
principles of these classes of methods consider the work of Suykens et al. (2001). One of the largest differences from SA
is that CSA features a new form of acceptance probability functions that can be applied to an ensemble of optimizers. This
approach considers several current states which are coupled together by their energies in their acceptance function. Also,
in contrast with the case for classical SA techniques, parallelism is an inherent characteristic of this class of methods.
In this paper we propose a fast cross-validation technique suitable for large scale data sets. We modify and apply the

solve-the-equation plug-in method for entropy bandwidth selection. Finally, we combine a fast global optimization tech-
nique with a simplex search in order to estimate the tuning parameters (regularization parameter and kernel bandwidth).
This paper is organized as follows. In Section 2 we give a short introduction concerning LS-SVM for classification and

regression. In Section 3 we discuss the estimation in the primal weight space. Section 4 explains the active selection of
a subsample based on the quadratic Rényi entropy together with a fast optimal bandwidth selection method using the
solve-the-equation plug-in method. Section 5 describes a simple heuristic for determining the number of PV (prototype
vectors). Section 6 discusses the proposed v-fold CV algorithm for FS-LSSVM. In Sections 7 and 8 the different algorithms
are successfully demonstrated on real-life data sets. Section 9 states the conclusions of the paper. Finally, Appendix gives a
detailed discussion of CSA.
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