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a b s t r a c t

Binary segmentation procedures (in particular, classification and regression trees) are
extended to study the relation betweendissimilarity data and a set of explanatory variables.
The proposed split criterion is very flexible, and can be applied to a wide range of data (e.g.,
mixed types of multiple responses, longitudinal data, sequence data). Also, it can be shown
to be an extension of well-established criteria introduced in the literature on binary trees.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

There aremanypractical applicationswhen the analysis of dissimilarity data is of interest. Examples are subjective ratings
of the differences between ‘items’ (e.g., goods, political candidates) as expressed by one or more observers (e.g., customers,
voters), or differences between gene-expression profiles or texts. Alternatively, dissimilarities can be computed from a set
of variables (binary, nominal, ordinal, numerical, or a combination of these; Kauffman and Rousseeuw, 1990) or on the basis
of more complex ‘objects’, as for example time series (see e.g., Kakizawa et al., 1998; Chouakria and Nagabhushan, 2007;
D’Urso, 2000), longitudinal data (Segal, 1992), or life courses represented as sequences (Abbott, 1995; Elzinga, 2003, 2005).
Pairwise dissimilarities between cases are arranged in the so-called dissimilarity matrix, D, which is usually analyzed

using Cluster Analysis (Everitt et al., 2009) or Multidimensional Scaling (MDS; Borg and Groenen, 2005). Cluster analysis
attempts at finding groups of cases as homogeneous as possible. MDS estimates latent factors which can be considered as
responsible for the observed dissimilarities.
In this work we are interested to study the relation between dissimilarities in D and a set of explanatory variables. The

problem is relevant both from an exploratory and from a predictive point of view. The first aspect is particularly important
when one considers perceived dissimilarities and wants to evaluate their dependency upon some objective characteristics
of cases. For example, Bergmann Tiest and Kappers (2006) study the relation between haptic perception of materials and
their roughness and compressibility. An example of the prediction problem can be found in McVicar and Anyadike-Danes
(2001), who consider the sequences of the monthly activities (school, training, employment, unemployment) experienced
by young people from Northern Ireland after the end of compulsory school. Dissimilarities between sequences (calculated
using Optimal Matching Analysis; Abbott, 1995) are related to a set of background family and individual characteristics
(gender, religion, performance at school, working conditions of parents). The goal is to assess whether certain background
characteristics are more likely to lead to sequences with particular features, for example dominated by unemployment.
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The problem of analyzing the dependency of dissimilarities on explanatory variables is thus not new in the literature,
and some interesting approaches are described below.
McVicar and Anyadike-Danes (2001) suggest to cluster cases on the basis of dissimilarities, and to relate them to the

explanatory variables through amultinomial model. On the one hand, this is reasonable if clusters are highly homogeneous,
so that it makes sense to assign the same response value to all the cases in the same cluster. On the other hand, multinomial
model can perform unsatisfactory when some levels of the response have low frequency. Hence, a trade-off may exist
between considering a small number of clusters so as to avoid estimation and predictions problems (as suggested byMcVicar
andAnyadike-Danes, 2001) and achieving a satisfactory level of homogeneity possibly considering a high number of clusters.
Alternatively, MDS can be applied. To each case a vector of MDS factor scores is thus associated, generally permitting to

distinguish between cases which are similar (and hence clustered together) but not identical one to another. The relation
between MDS factors and the explanatory variables could be analyzed, for example through linear models. Nevertheless,
factorial techniques are usually considered (see e.g., Green et al., 1989; Cox and Cox, 1994; Bergmann Tiest and Kappers,
2006); external variables are projected onto the MDS factorial space, to visualize their relation with MDS factors. Since
projections are linear combinations of the involved variables, a linear relation is implicitly assumed.
The previous proposals proceed in a sequential fashion. D is first simplified through clusters or MDS factors, which

are then related to the explanatory variables. This simplification has the advantage that it ignores some of the noise
possibly characterizing dissimilarities. It also provides an ‘estimation’ of the response/s underlying dissimilarities. However,
explanatory variables have no influence on clusters or MDS factors. As Kiers et al. (2005) point out, this can be a drawback
‘because the MDS (or the cluster) solution may sometimes be based primarily on other relations in the data, and therefore,
the MDS (or the cluster) solution may (to some extent) miss the relation of the observed dissimilarities with the external
variables’ (italics are ours). An approach simultaneously extracting MDS factors and projecting external variables onto the
MDS space can be found in Heiser and Meulman (1983). Kiers et al. (2005) refine this proposal, and provide an algorithm
which simultaneously determines clusters and MDS factors, and relates clusters centroids to the external variables through
a linear model. These last techniques are intended to improve the interpretation of MDS factors, which can be difficult
especially when perception data are considered. Hence, the exploratory analysis of the relation with the external variables
is prevailing here. Actually in Kiers et al. (2005) cluster centroids rather than cases are related to external variables, and no
rules are provided to assign new cases to clusters. In this sense, the prediction problem is not explicitly taken into account.
More importantly, all the considered methods inspect the dependency of the (possibly simplified) response/s upon

the explanatory variables under the assumption of linearity, which in some applications (for example when perceived
dissimilarities are considered) may be too far fetched.
Ourmethod differs from those illustrated above under different perspectives. To study the relation between dissimilarity

data and explanatory variables, in Section 2 we introduce an extension of the Classification and Regression Trees (CART)
procedure (Breiman et al., 1984). We thus refer to a tree-predictor, obtained by recursively partitioning the sample into
more and more homogeneous (with respect to the ‘response’) sub-sets, through a sequence of binary splits taking the form
of conditions on the values of the explanatory variables. Predicted homogeneous groups of cases are consequently obtained
on the basis of the explanatory variables, thus simultaneously simplifying and explaining dissimilarities. Tree-predictors are
not based upon the assumption of linearity (or of other analytical relations). Also, the prediction problem is explicitly taken
into account. A prediction is assigned to eachnode, andnewcases can be assigned to the nodes on the basis of the explanatory
variables. Also, validation procedures are considered to prevent over-fitting of the obtained tree to the data it is based upon.
Our procedure can thus be considered as an alternative method to relate dissimilarities to external variables.

Furthermore, in Section 2 we also show that our method can be regarded as an extension of some popular and well-
established criteria, used to grow trees for single or multiple responses. Under this point of view, our proposal can
be regarded as a generalized (CART) criterion which can be used to grow trees when dealing with complex responses,
provided that pairwise dissimilarities can be suitably measured. This permits to take advantage of the impressive number
of contributions introduced in the literature to properly measure dissimilarities on the basis of complex data.
An application of our method to ecological data is discussed in Section 3. Section 4 summarizes and concludes, outlining

directions of future research.

2. Trees for dissimilarity matrices

CART, introduced by Breiman et al. (1984), is one of the most popular methods to build trees. Tree-structured predictors
are defined by recursively partitioning a sample into sub-sets, called nodes, through a sequence of binary splits, taking the
form of conditions on the values of the explanatory variables.
The nodes obtained throughout the sequence of splits should be as homogeneous as possible with respect to the

considered response. Hence, an impurity function has to be defined to measure the heterogeneity within a node g on the
basis of the dissimilarities in D. Here we consider the average of the (squared) dissimilarities within g:

i(g|D) =
1
n2g

∑
i∈g

∑
h∈g

d2(i, h|D), (1)

where ng is the size of g and d(i, h|D) is the (i, h)th entry of D.
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