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a b s t r a c t

Bounded data with excess observations at the boundary are common in many areas of
application. Various individual cases of inflated mixture models have been studied in the
literature for bound-inflated data, yet the computational methods have been developed
separately for each type of model. In this article we use a common framework for
computing these models, and expand the range of models for both discrete and semi-
continuous data with point inflation at the lower boundary. The quasi-Newton and EM
algorithms are adapted and compared for estimation of model parameters. The numerical
Hessian and generalized Louis method are investigated as means for computing standard
errors after optimization. Correlated data are included in this framework via generalized
estimating equations. The estimation of parameters and effectiveness of standard errors are
demonstrated through simulation and in the analysis of data from an ultrasound bioeffect
study. The unified approach enables reliable computation for a wide class of inflated
mixture models and comparison of competing models.

Published by Elsevier B.V.

1. Introduction

Bound-inflated data are prevalent in a wide variety of disciplines, such as health and safety studies, economics, finance
and insurance risk analysis. Typically the responses are bounded below by zero with a significant mass of zero observations,
resulting in data that are either discrete with too many zeros for a standard discrete distribution, or semi-continuous with
positive continuous values combined with a substantial portion of zeros. In our collaborative research on ultrasound safety
(O’Brien et al., 2006), groups of laboratory rabbits were exposed to focused ultrasound in both lungs to investigate the
risk of ultrasound-induced hemorrhage. Due to the designed low to moderate acoustic pressure levels, about 80% of the
observations were free of lesions while 20% exhibited lesions. The goal was to evaluate the effect of acoustic pressure
and other factors based on the clustered, zero-inflated lesion size data to develop insight into the safe pressure levels for
diagnostic clinical ultrasound.
A two-part model handles zeros and positive values, discrete or continuous, separately through twomodel components:

a binary model for the occurrence of an event, and a zero-truncated Poisson or a log-normal model for the strictly positive
size of the event conditional on its occurrence (Welsh et al., 1996; Zhou and Tu, 1999). For correlated counts with extra
zeros, the zero-truncated Poisson and negative binomial models were extended by adding random effects to each model
component (Yau and Lee, 2001; Min and Agresti, 2005). Dobbie and Welsh (2001) constructed generalized estimating
equations (GEEs) with working correlation matrices for both components of the zero-truncated Poisson model. For semi-
continuous longitudinal or clustered data, two-part random effects models were considered by Olsen and Schafer (2001)
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and Tooze et al. (2002). Albert and Shen (2005) proposed a two-part latent process model, which was recently adapted to
incorporate random effects as well with Bayesian inference (Ghosh and Albert, 2009). For Bayesian two-part models with
random effects, see also Zhang et al. (2006).
A zero-inflated (ZI) latent mixture model adds the point mass at zero to a discrete or censored distribution also capable

of producing zeros. Two sub-models are involved: a binary model for the partially observed mixture-component indicators,
and a Poisson regression as in the ZI Poisson model (Lambert, 1992) or a left-censored normal as in the ZI Tobit model
(Cragg, 1971). A left-censored log-normal mixed with the point mass at a positive lower limit of detection was introduced
by Moulton and Halsey (1995). In the presence of correlation, random effects were incorporated into either one or both
sub-models (Hall, 2000; Berk and Lachenbruch, 2002; Yau et al., 2003; Lee et al., 2006). Alternatively, Moulton et al. (2002)
implemented GEEs with the working independence correlation; Hall and Zhang (2004) developed a GEE approach for the
class of ZI exponential family models.
Although much work has been done on fitting ZI data, most derivations have relied on special features of the individual

models. We extend the existing latent mixture models through development of a unified framework, the left-inflated
mixture (LIM) models for both discrete and semi-continuous data with point inflation at an arbitrary lower bound. This
class not only includes current models but is broader by allowing various survival distributions (e.g., censored extreme
value, logistic and t distributions) that add flexibility for modeling semi-continuous data. For correlated data, we construct
GEEswith theworking independence likelihood and estimate the covariancematrix of parameter estimates by the sandwich
formula.
The quasi-Newton and EMalgorithms are used for common estimation ofmodel parameters. To find asymptotic standard

errors associated with the EM, we investigate the generalized Louis method that extends the method of Louis (1982) to
dependent data. For the quasi-Newton algorithm, a simulation study is conducted to assess the adequacy of estimating
the outer Hessian matrix in the sandwich formula with the approximate Hessian at convergence. The performance and
computational speed of the two methods are also compared empirically.
The rest of this article is organized as follows. Section 2 defines the left-inflatedmixturemodels through a latent variable

representation. Section 3 concerns maximum likelihood estimation for independent data and generalized estimating
equation analysis for correlated responses. Section 4 discusses computational optimization of the estimating criteria by
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton and EM algorithms. Standard error estimation associated
with each algorithm is discussed. Section 5 presents a simulation study that assesses and compares the two computational
methods. The practical utility of our unified approach is illustrated with an ultrasound-induced lung hemorrhage study in
laboratory animals in Section 6. Concluding comments are given in Section 7.

2. Left-inflated mixture models

Let Y = (Y T1 , . . . , Y
T
n )
T denote the multivariate response vector, where Yi = (Yi1, . . . , Yimi)

T is the response vector for
subject i, and Yij is the jth measure on subject i, i = 1, . . . , n, j = 1, . . . ,mi. The Yij are assumed to be bounded below (on
the left) by Lwith a nonzero probability of observations equal to L. The lower boundary L is assumed to be known from the
application under study or given by objective methods when a lower detection limit exists (Moulton and Halsey, 1995).
Let y = (yT1 , . . . , y

T
n )
T be a realization ofY .We consider left-inflatedmixturemodels, inwhich themarginal distributions

of the responses can be expressed as mixtures of distributions Fij on [L,∞) and point masses concentrated at L. Here Fij may
be discrete or semi-continuous (as in the case of a left-censored distribution). The marginal densities have the form

πijf (yij)+
(
1− πij

)
δL(yij) =

{
1− πij + πijFij(L), if yij = L
πijf (yij), if yij > L

(1)

where 0 < πij ≤ 1 denotes the mixing weight, Fij(L) = F(Yij = L), f (·) is the frequency or density function for F , and δL(u)
equals one if u = L and zero otherwise.
Such models have convenient latent variable representations. Define the mixture-component indicator vector W =

(W T
1 , . . . ,W

T
n )
T , where Pr(Wij = 1) = πij. Introduce a random vector Z = (ZT1 , . . . , Z

T
n )
T whose marginal distributions

match Fij on [L,∞), but whose distributions on (−∞, L) are chosen for computational convenience. Finally, assume that
Wij and Zij are pairwise independent. Then

Yij
d
=
(
1−Wij

)
L+Wij

{
L · I(Zij ≤ L)+ Zij · I(Zij > L)

}
(2)

for i = 1, . . . , n, j = 1, . . . ,mi, where ‘‘d’’ denotes in distribution and I(A) is the indicator function for event A. If L = 0,
then Eq. (2) yields a simplified representation for zero-inflated responses: Yij

d
= WijZij · I(Zij > 0). For example, a ZI binomial

random variable simplifies further toWijZij with Zij ∼ B(nij, µij), while a ZI Tobit random variable has Zij ∼ N(µij, σ 2).
Consider regression models where both πij and µij may depend on covariates through

h1(πij) = gTij γ
h2(µij) = xTijβ,

(3)
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