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a b s t r a c t

Many diagnostic tools and goodness-of-fit measures, such as the Akaike information crite-
rion (AIC) and the Bayesian deviance information criterion (DIC), are available to evaluate
the overall adequacy of linear regression models. In addition, visually assessing adequacy
in models has become an essential part of any regression analysis. In this paper, we focus
on a spatial consideration of the local DIC measure for model selection and goodness-of-
fit evaluation. We use a partitioning of the DIC into the local DIC, leverage, and deviance
residuals to assess the local model fit and influence for both individual observations and
groups of observations in a Bayesian framework. We use visualization of the local DIC and
differences in local DIC between models to assist in model selection and to visualize the
global and local impacts of adding covariates or model parameters. We demonstrate the
utility of the local DIC in assessing model adequacy using HIV prevalence data from preg-
nant women in the Butare province of Rwanda during the period 1989–1993 using a range
of linear model specifications, from global effects only to spatially varying coefficient mod-
els, and a set of covariates related to sexual behavior. Results of applying the diagnostic
visualization approach include more refined model selection and greater understanding of
the models as applied to the data.

Published by Elsevier B.V.

1. Introduction

Many diagnostic tools are available to evaluate the adequacy of a linear model. Model residuals are used to assess the
model fit, while diagnostics such as leverage values, Cook’s distances, DFFITS, and DFBETAS are used to identify outlying
and influential observations. Residuals provide a well-known tool for identifying outlying data points and summarizing the
contribution of each individual observation to the overall fit of a model, thus providing valuable elements for constructing
model diagnostics. To aid in the evaluation of a model, diagnostic values are frequently presented in scatter plots with fitted
values or covariates to identify observations that may be suspect according to one or moremodel characteristic (Neter et al.,
1996). In fact, visually assessing the lack of fit in models has become an essential part of any regression analysis. This is
evident in many diagnostic works in statistics, including that of Cook and Weisberg (1999), who use model checking plots
to evaluate the appropriateness of the linear model. The model checking plot is a scatter plot of the fitted outcome and a
function of the predictors, along with the ordinary least squares fit and a Lowess (locally weighted scatterplot smoothing)
fit. Cook and Weisberg (1994) also use added-variable plots, scatter plots for visually assessing whether a variable has
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explanatory power when added to the regression model of the outcome on another variable. These added-variable plots,
along with ARES (Adding REgressors Smoothly) plots (Cook and Weisberg, 1994), are useful diagnostic plots for model
selection. For visually identifying influential observations, Cook’s distances are plotted against predictor values or are used to
highlight certain observations in a plot of residuals versus predictors in generalized additive models (Hastie and Tibshirani,
1990). In spatial analyses, residuals themselves are also often mapped over the study unit to inspect for significant spatial
autocorrelation of errors, a violation of the independence assumption of residuals in a linear model.
In addition to model diagnostic tools assessing the impact of individual observations, methods of assessing the overall

goodness of fit and model complexity also have been developed for linear models, such as the Akaike information criterion
(Akaike, 1973). The AIC is defined as AIC = D(θ̂)+2k, the combination of the deviance evaluated at themaximum likelihood
estimate of the parameters θ and a penalty defined as twice the number ofmodel parameters. The devianceD(θ̂) is a general
measure of fit defined as D(θ̂) = −2 log p(y|θ̂ ), with log p(y|θ̂ ) denoted as the maximized log likelihood. The AIC fits into
the broad literature of classical covariate selection andmodel choice (Burnham and Anderson, 2002). There are also a variety
of statistical assessments of overall model fit in the Bayesian paradigm, including Bayes factors (Kass and Raftery, 1995), the
Bayesian information criterion (BIC: Schwarz, 1978) and the deviance information criterion (DIC: Spiegelhalter et al., 2002),
among others (Gelman and Pardoe, 2006). As a generalization of the AIC, the DIC is appropriate for model comparison in
complex hierarchical models where the number of parameters is unknown, such as themodels used in spatial analysis, with
disease mapping examples found in Zhu and Carlin (2000) and Best et al. (1999). As with the AIC, the DIC is a measure of
model fit or adequacywith a penalty formodel complexity. An advantage of theDIC is that one can easily calculate it from the
Markov chainMonte Carlo (MCMC) simulation samples generated when drawing samples from the posterior distribution of
a parameter in a Bayesianmodel. Another key advantage of the DIC is that it can be partitioned into individual contributions
fromobservations in the data, as fewdiagnostic tools currently exist in the statistical literature to assess the local importance
of additionalmodel covariateswithin groups or subsets of data. The partitioning of the DIC into individual data contributions
is outlined in Spiegelhalter et al. (2002). While the work of Spiegelhalter et al. (2002) provides the components necessary
for an approach to local diagnosis of Bayesian model fit, an approach for visually diagnosing local spatial model fit has not
been previously explored.
A local partitioning of the DIC is especially relevant in spatial model applications, such as in disease mapping, where rel-

atively strong priors concerning spatial correlation among study units are often used. In the applied spatial statistical litera-
ture, there has been a recent emphasis onmethodology thatmodels local covariate effects, often spatially correlated, instead
of the more traditional models that represent relationships with fixed effects across a study area. In reality, the association
between a covariate and the occurrence of an outcome may vary between geographic and demographic subsets of indi-
viduals. Examples of reported differences in covariate and health outcome associations within a study population include:
(1) prevalence of Hepatitis C virus among drug users across two geographic regions in Belgium (Mathei et al., 2004), (2)
engagement in high-risk sexual behavior among men who have sex with men within different subgroups and geographic
locations throughout the United States (McFarland et al., 2001; Leone et al., 2004; Guenther-Grey et al., 2005), and (3) preva-
lence of human immunodeficiency virus (HIV) among injecting drug users in urban and rural Scotland (Haw and Higgins,
1998). Such studies suggest that the impact of a determinant within a subset of individuals or a subset of the study area
may drive an overall significant association and falsely suggest an association for the entire population. Conversely, pa-
rameter estimates based on the entire population may mask an influential impact limited to a subset of the population.
Some methodology in spatial statistics recognizing the potential for these situations and allowing for regression relation-
ships that vary over space are Bayesian spatially varying coefficient (SVC) models (Gelfand et al., 2003; Banerjee et al., 2004)
and geographically weighted regression (Fotheringham et al., 2002). In practice, spatially varying coefficient models can
be computationally demanding to fit, and local diagnostic tools that justify the additional computational effort in terms of
improved local fit and more accurate representation of relationships are needed. In addition, local diagnostic methods to
identify situations of differential fit and influence among spatial subgroups are currently not well developed. Related to this
is subset analysis, which examines the effects of two or more treatments within each of several subsets, or subgroups, of
data along with an overall assessment (Shafer and Olkin, 1983). An issue in subgroup analysis is that a large number of sub-
groups may be identified within a typical data set, which raises concern about multiplicity effects (Dixon and Simon, 1991).
Partitioning of the DIC may be helpful in identifying areas or data subgroups where a specified spatial model is ill fitting or
not particularly appropriate, i.e. where data are not in agreement with the prior.
In this paper, we focus on a spatial consideration of local DIC statistics formodel selection and goodness-of-fit evaluation.

We expand on the DIC partitioning approach of Spiegelhalter et al. (2002) to explore its applicability to visually assessing
and quantifying the local model fit with individual and groups of spatial data. We use a partitioning of the DIC to assess the
localmodel fit and data influence in a Bayesian framework for both individual observations and groups of observations, with
groups corresponding to predefined spatial units. The interest in a partitioned DIC is to identify whether some models fit
differently in certain areas and highlight any local, rather than global, impacts of covariate effects. In our approach to local
model diagnosis, we introducemapping of the partitioned, or local, DIC to explore spatial patterns ofmodel fit over different
spatial areas. We also map differences in local DIC values between models to examine the impact of adding additional
covariates or model parameters. In addition, we plot the local DIC components of deviance residuals and leverage values
and link plots ofDIC components tomaps of local DIC values. Thenovelty of thiswork involves building diagnostic tools out of
available components in a typical Bayesian analysis to strengthen the data analysis, an area of rich results from linearmodels
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