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The geometric thickness of a graph G is the smallest integer t such that there exist a 
straight-line drawing � of G and a partition of its straight-line edges into t subsets, where 
each subset induces a planar drawing in �. Over a decade ago, Hutchinson, Shermer, and 
Vince proved that any n-vertex graph with geometric thickness two can have at most 
6n − 18 edges, and for every n ≥ 8 they constructed a geometric thickness-two graph with 
6n − 20 edges. In this paper, we construct geometric thickness-two graphs with 6n − 19
edges for every n ≥ 9, which improves the previously known 6n − 20 lower bound. We 
then construct a thickness-two graph with 10 vertices that has geometric thickness three, 
and prove that the problem of recognizing geometric thickness-two graphs is NP-hard, 
answering two questions posed by Dillencourt, Eppstein and Hirschberg. Finally, we prove 
the NP-hardness of coloring graphs of geometric thickness t with 4t − 1 colors, which 
strengthens a result of McGrae and Zito, when t = 2.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The thickness θ(G) of a graph G is the smallest integer t such that the edges of G can be partitioned into t subsets, where 
each subset induces a planar graph. Since 1963, when Tutte [2] first formally introduced the notion of graph thickness, this 
property of graphs has been extensively studied for its interest from both the theoretical [3–5] and practical point of 
view [6,7]. A wide range of applications in circuit layout design and network visualization, have motivated the examination 
of thickness in the geometric setting [5,8,9]. The geometric thickness θ(G) of a graph G is the smallest integer t such that 
there exist a straight-line drawing (i.e., a drawing on the Euclidean plane, where every vertex is drawn as a point and every 
edge is drawn as a straight line segment) � of G and a partition of its straight-line edges into t subsets, where each subset 
induces a planar drawing in �. If t = 2, then G is called a geometric thickness-two graph (or, a doubly-linear graph [9]), and �
is called a geometric thickness-two representation of G . While thickness does not impose any restriction on the placement of 
the vertices in each planar layer, geometric thickness forces the same vertices in different planar layers to share a fixed point 
in the plane. Eppstein [8] clearly established this difference by constructing thickness-three graphs that have arbitrarily large 
geometric thickness.

✩ A preliminary version of the paper appeared in the Proceedings of the 39th International Workshop on Graph-Theoretic Concepts in Computer Science 
(WG 2013) [1].
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1.1. Structural properties

Geometric thickness has been broadly examined on several classes of graphs, e.g., complete graphs [5], bounded-degree 
graphs [10,11,8], and graphs with bounded treewidth [12,13]. Hutchinson, Shermer, and Vince [9] examined properties of 
graphs with geometric thickness two. They proved that these graphs can have at most 6n − 18 edges, and for every n ≥ 8
they constructed a geometric thickness-two graph with 6n − 20 edges. The graphs that gave the 6n − 20 lower bound were 
rectangle visibility graphs, i.e., these graphs can be represented such that the vertices are axis-aligned rectangles on the plane 
with adjacency determined by the horizontal and vertical visibility. Hutchinson et al. [9] proved that a rectangle visibility 
graph can have at most 6n −20 edges, therefore, any geometric thickness-two graph with more than 6n −20 edges (if exists) 
cannot be a rectangle visibility graph. Even after several attempts [5,11] to understand the structural properties of geometric 
thickness-two graphs, the question whether there exists a geometric thickness two graph with 6n −18 edges remained open 
for over a decade. Answering this question is quite challenging since although one can generate many thickness-two graphs 
with 6n − 18 or 6n − 19 edges, no efficient algorithm is known that can determine the geometric thickness of such a 
graph. However, by examining the point configurations that are likely to support geometric thickness-two graphs with large 
numbers of edges, we have been able to construct geometric thickness-two graphs with 6n − 19 edges, which improves 
the previously known 6n − 20 lower bound on the maximum number of edges that a graph with geometric thickness 
two can have. In Section 2 we have shown that the K9 minus an edge is a thickness-two graph, which has 6n − 19
edges. We then show that thickness-two graphs that do not contain K9 minus an edge may also have large number of 
edges.

Theorem 1. For each n ≥ 9, there exists a geometric thickness-two graph with n vertices and 6n − 19 edges that contains K9 minus 
an edge as a subgraph. For each n ≥ 11, there exists a geometric thickness-two graph with 6n − 19 edges that does not contain K8.

1.2. Recognition

Although thickness is known for all complete graphs [3] and complete bipartite graphs [4], geometric thickness for these 
graph classes is not completely characterized. Dillencourt, Eppstein and Hirschberg [5] proved an �n/4� upper bound on 
the geometric thickness of Kn , giving a nice construction for drawing graphs with �n/4� planar layers. They also gave a 
lower bound on the geometric thickness of complete graphs that matches the upper bound for several smaller values of n. 
Their bounds show that the geometric thickness of K15 is greater than its thickness, i.e., θ(K15) = 4 > θ(K15) = 3, which 
settles the conjecture of [14] on the relation between thickness and geometric thickness. Since the exact values of θ(K13)

and θ(K14) are still unknown, Dillencourt et al. [5] hoped that the relation θ(G) > θ(G) could be established with a graph 
of smaller cardinality. In Section 3 we prove that the smallest such graph contains 10 vertices.

Theorem 2. For every n ≤ 9 and every graph G on n vertices, θ(G) = θ(G). For every graph n > 10, there exists a graph G ′ on n
vertices such that θ(G) > θ(G).

Since determining the thickness of an arbitrary graph is NP-hard [6], Dillencourt et al. [5] suspected that determining 
geometric thickness might be also NP-hard, and mentioned it as an open problem. The hardness proof of Mansfield [6] relies 
heavily on the fact that θ(K6,8) = 2. Dillencourt et al. [5] mentioned that this proof cannot be immediately adapted to prove 
the hardness of the problem of recognizing geometric thickness-two graphs by showing that θ(K6,8) = 3. This complexity 
question has been repeated several times in the literature [12,8] since 2000, and also appeared as one of the selected open 
questions in the 11th International Symposium on Graph Drawing (GD 2003) [15]. In Section 4 we settle the question by 
proving the problem to be NP-hard.

Theorem 3. It is NP-hard to determine whether the geometric thickness of an arbitrary graph is at most two.

1.3. Colorability

As a natural generalization of the well-known Four Color Theorem for planar graphs [16], a long-standing open problem 
in graph theory is to determine the relation between thickness and colorability [17,18]. For every t ≥ 3, the best known 
lower bound on the chromatic number of the graphs with thickness t is 6t − 2, which can be achieved by the largest 
complete graph of thickness t . On the other hand, every graph with thickness t is (6t)-colorable [17]. Recently, McGrae and 
Zito [19] examined a variation of this problem that given a planar graph and a partition of its vertices into subsets of at 
most r vertices, asks to assign a color (from a set of s colors) to each subset such that two adjacent vertices in different 
subsets receive different colors. They proved that the problem is NP-complete when r = 2 (respectively, r > 2) and s ≤ 6
(respectively, s ≤ 6r − 4) colors. In Section 5 we prove the NP-hardness of coloring geometric thickness-t graphs with 4t − 1
colors. As a corollary, we strengthen the result of McGrae and Zito [19] that coloring thickness-(t = r = 2) graphs with 
6 colors is NP-hard. Our hardness result is particularly interesting since no geometric thickness-t graph with chromatic 
number more than 4t is known.
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