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a b s t r a c t

A regression model for count data based on the generalized Waring distribution is
developed. This model allows the observed variability to be split into three components:
randomness, internal differences between individuals and the presence of other external
factors that have not been included as covariates in the model. An application in the field
of sports illustrates its capacity for modelling data sets with great accuracy. Moreover, this
yields more information than a model based on the negative binomial distribution.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Poisson distribution is used to model count data where the occurrence of an event is random and the occurrence
rate is the same for all individuals. However, this occurrence rate may differ across individuals: this is known as
heterogeneity (Long, 1997). When this heterogeneity may be explained by quantifiable and observable characteristics of
the individuals, the Poisson regression model (PRM) is valid, in which the mean is a function of the observed variables
or covariates. So, the heterogeneity is modelled as a deterministic function of the explanatory variables (Winkelmann,
2003). This model is the most basic for count data and is characterized by the equality of conditional mean and variance
(equidispersion).
However, it is well known that the variability of data often exceeds the Poisson variability (overdispersion). It may

be explained in several ways (Xekalaki, 1983, 2004; Winkelmann, 2003), among others, by the existence of unobserved
heterogeneity, that is, by the presence of unfixed occurrence rates at each level of the model covariates. If it is assumed that
this occurrence rate follows a gamma distribution, the resulting model is the negative binomial regression model (NBRM)
(Hinde and Demétrio, 1998; Poortema, 1999; Cameron and Trivedi, 1998; Long, 1997). This allows us to consider a new
source of variation that differs from the observed covariates and from randomness and thereby an additional component to
explain the variability.
Moreover, the unobserved heterogeneity may be due to internal differences across individuals and external factors that

might also be included as covariates in the regressionmodel if they could be observed. In theNBRM both sources of variation
in the occurrence rate are jointly considered by means of a gamma distribution.
In accident theory the univariate generalizedWaring distribution,UGWD, (Irwin, 1968; Xekalaki, 1983) is an extension of

the negative binomial distribution that allows three sources of variation to be distinguished: randomness, which is inherent
in any random phenomenon, and the two aforementioned sources of heterogeneity between individuals, the one due to
external factors, that is, different accident risk exposures (liability), and the other due to internal factors pertaining to each
individual, that is, personal differences that are not related to external factors (proneness). A more general distribution
which also considers this partition of the variance is studied by Rodríguez-Avi et al. (2007).
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This work describes a regression model with a UGWD as its underlying distribution. The main advantage of this model
over theNBRM is that the former allows us to distinguish the part of the unobserved heterogeneity due to the internal factors
inherent to each individual and that due to the external factors such as those covariates that influence the variability of data
but that have not been included in the model because they cannot be observed or measurable. From now on and by analogy
with the terminology used in accident theory, these parts of the variance will be called proneness and liability, respectively.
The performance of both models has been compared by simulation methods.
An example in the field of sports is considered to illustrate the behaviour of themodel. Specifically, the dependent variable

is the number of goals scored by the footballers of the Spanish football league over several seasons and the covariates are the
position of the footballers on the pitch and the final classification of the team. Moreover, the number of matches played by
each footballer has been initially considered only as offset and subsequently also as regressor. The effect of the covariates is
studied, the fit obtained is compared against a regression model based on a negative binomial distribution and the relative
weight of the three sources of variation (randomness, liability and proneness) in the presence of the covariates is computed.

2. Negative binomial regression models

Let Y be the response variable of a count model. In a PRM , Y |x ∼ Poisson(λx), where λx is the mean of the response
variable for the values of the covariates, x′ = (x1, . . . , xp). Obviously, there is equidispersion in each level of the covariates,
that is, Var(Y |x) = E(Y |x).
As has been stated, if Y |x is overdispersed, a way of explaining this excess variability is to propose a parametric model

for λx. When λx ∼ Gamma(ax, vx), that is to say,

f (λx) =
1

v
ax
x Γ (ax)

λax−1x e−λx/vx , λx > 0, ax, vx > 0.

Y |x has a negative binomial distribution with probability mass function (p.m.f.)

f (y|x) =
Γ (ax + y)
Γ (ax)y!

(
1

1+ vx

)ax ( vx

1+ vx

)y
, y = 0, 1, 2, . . . , ax, vx > 0, (1)

denoted by Y |x ∼ NB(ax, px) with px = (1 + vx)−1. In this case, an NBRM arises. It should be emphasized that the model
about λx is related to the unexplained heterogeneity, independently of its origin. In this model it verifies that

E(Y |x) = E(E(Y |x, λx)) = E(λx) = µx = axvx.

Different NBRM can be generated by linking µx, ax and vx with the explanatory variables. One of the most usual in data
processing is given by

ax = a, µx = eβ0+x
′β ,

with β ′ = (β1, . . . , βp), where a does not depend on the covariates but does vx. This model is known as Negbin II (Cameron
and Trivedi, 1986) and it establishes a linear variance-mean rate:

Var(Y |x) = E(Var(Y |x, λx))+ Var(E(Y |x, λx))

= E(λx)+ Var(λx) = µx +
1
a
µ2x = µx

(
1+

1
a
µx

)
.

The first term represents the variability due to randomness and the second to differences between individuals. The partition
of the variance for this model appears in Table 1. It can be observed that the variance rate due to heterogeneity across
individuals tends to 1 as µx increases, whereas the variance rate due to randomness tends to 0. This means that, as the
average number of occurrences of an event increases, the observed variability is more due to the individual heterogeneity
than to randomness.
It should be pointed out that if a→∞ and vx → 0 with µx constant, the Negbin II model tends to the PRM, so the latter

is nested within the former.
On the other hand, if v does not depend on the covariates but does ax, that is, vx = v and µx = eβ0+x

′β , the Negbin I
model appears (Cameron and Trivedi, 1986) in which the variance-mean rate is constant:

Var(Y |x) = (1+ v)µx.

In order to make comparisons, we focus on the Negbin II model, since it provides better fits for data included here than
does the Negbin I model.
The NBRM recently appears within more general frameworks to model count data variables, as in Rigby et al. (2008),

where all the distribution parameters can be modelled as functions of explanatory variables, or in Cordeiro et al. (2009),
where a new class of discrete generalized nonlinear models is introduced.
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